Microcalcification Extraction by Using Automatic Thredholding Based on Region Growing

영역 성장법을 기반으로 자동적인 임계치 설정을 이용한 미세 석회화 추출

  • 원철호 (경일대학교 제어계측공학과) ;
  • 권용준 (경북대학교, 전자전기컴퓨터학) ;
  • 이정현 (경북대학교, 전자전기컴퓨터학) ;
  • 박희준 (경북대학교, 전자전기컴퓨터학) ;
  • 임성운 (경일대학교 제어계측공학) ;
  • 김명남 (경북대학교 의과대학 의공학교) ;
  • 조진호 (경북대학교, 전자전기컴퓨터학부, 경북대학교 의과대학 의공학교실)
  • Published : 2004.08.01

Abstract

In this paper, we proposed the algorithm for detection of microtalcification by automatic threshold decision based on region growing method. The region for optimal threshold is grown from local maximum pixel by increasing repeatedly threshold in microralcification candidate region. Then, the optimal threshold is automatically decided at the maximum value of the contrast and edge sharpness in this region. Microcalcifications could be efficiently detected as satisfied result that true positive ratio is 81.5% and average false positive numbers are 1.1 about total 299 microcalcifirations in real image. In a result, we showed that this algorithm can be used to aid diagnostic-radiologist for the diagnosis of the early phase of breast cancer.

본 논문에서는 영역 성장법을 기반으로 자동적인 임계치 설정에 의하여 미세 석회화를 추출하는 방법을 제안하였다. 미세 석회화 후보 영역에서 임계치를 반복적으로 증가시키면서 국부 최대치 화소로부터 영역을 성장시키고 명암 대비와 에지 선예도가 최대일 때 최적의 임계치가 결정됨으로써, 실제 영상에 있어서 효과적으로 미세 석회화를 추출할 수 있었다. 총 299개의 미세 석회화에 대하여 81.5%의 TP(true positive) 비율과 1.1개의 평균 FP(false positive) 개수를 가지는 만족할 만할 결과를 얻었으며, 진단 방사선 전문의의 조기 유방암 진단을 위한 보조 역할이 될 수 있음을 알 수 있었다.

Keywords

References

  1. Radiologic Clinics of North America v.33 Evaluation of breast microcalcification B.S. Monsees
  2. Radiology v.168 Mammogrhphy in the diagnosis of in situ breast carcinoma F.F. Hall https://doi.org/10.1148/radiology.168.1.3380974
  3. IEEE Trans. on Medical Imaging v.13 Application of shape analysis to mammographic calcifications L. Shen;R.M. Rangayyan https://doi.org/10.1109/42.293919
  4. IEEE Engineering in Medicine and Biology Magazine v.10 Computer assisted diagnosis for digital mammography W. Qian;L.P. Clarke
  5. SPIE proc. Series 1905-46 Computer-aided detection of clustered microcalcifications R.M. Nishikawa;U. Jiang;M.L. Giger;K. Doi;C.J. Vybrny;R.A. Schmidt
  6. Image processing and its Application Automatic detection of calcification in mammograms S.A. Hojjatoleslami;J. Kittler
  7. IEEE Eng. Med. Biol. Mag. v.14 Wavelets for contrast enhancement of digital mammography A. Laine;J. Fan;W. Yang https://doi.org/10.1109/51.464770
  8. IEEE Trans. on Medical Imaging v.17 no.4 Detection of microcalcifications in digital mammograms using wavelets T.C. Wang;N.B. Karayiannis https://doi.org/10.1109/42.730395
  9. IEEE Transaction on Medical Imaging v.15 no.2 Wavelet transform for detecting micro- calcification in mammograms R.N. Strickland;H.I. Hahn https://doi.org/10.1109/42.491423
  10. IEEE Trans. Med. Imag. v.17 no.4 Detection of Microcalcifications in Digital mammograms using wavelets T.C. Wang;N.B. Karayiannis https://doi.org/10.1109/42.730395
  11. IEEE Trans. on Image Processing v.8 no.1 Image segmentation and analysis via multiscale gradient watershed hierarchies J.M. Gauch https://doi.org/10.1109/83.736688
  12. IEEE Trans. on Image Processing v.7 no.12 Hybrid image segmentation using watersheds and fast region merging K. Haris;S.N. Efstratadis;N. Maglaveras;A.K. Katsaggelos https://doi.org/10.1109/83.730380
  13. Digital image processing R.C. Gonzalez;R.E. Woods
  14. Image processing, analysis, and machine vision M. Sonka;V. Hlavac;R. Boyle
  15. International Journal of Computer Vision v.1 Snakes: Active contour models M. Kass;A. Witkin;D. Terzopolous https://doi.org/10.1007/BF00133570
  16. Int. J. Comput. Vis. v.22 no.1 Geodesic active contours V. Caselles;R. Kimmel;G. Sapiro https://doi.org/10.1023/A:1007979827043
  17. IEEE Trans. on Image Processing v.10 no.10 Fast geodesic active contours R. Goldenberg;R. Kimmel;E. Rivlin;M. Rudzsky https://doi.org/10.1109/83.951533
  18. J. of KOSOMBE v.18 no.4 Detection of mammographic microcalficications by statistical pattern classification of pattern matchine Y.S. Yang
  19. Investigat. Radio. v.23 Computer-aided detection of microcalcifications in mammograms: Methodology and preliminary clinical study H.P. Chan;K. Doi;C.J. Vyborny;K.L. Lan;R.A.Schmidt
  20. Int. J. pattern Recognition Artificial Intell. v.7 Comparative evaluation of pattern recognition techniques for detection of microcalcifications in mammography K.S. Woods;J.L. Solka;C.E. Priebe;W.P. Kegelmeyer;C.C. Doss;K.W. Bowyer