• Title/Summary/Keyword: microbubble

Search Result 107, Processing Time 0.027 seconds

Relaxation Behavior of a Microbubble under Ultrasonic Field (초음파장하에서 미소기포의 완화적 거동)

  • Karng, Sarng-Woo;Kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.550-555
    • /
    • 2000
  • Nonlinear oscillation of a microbubble under ultrasound was investigated theoretically. The bubble radius-time curves calculated by the Rayleigh-Plesset equation with a polytropic index and by the Keller-Miksis equation with the analytical solution for the Navier-Stokes equations of the gases were compared with the observed results by the light scattering method. This study has revealed that the bubble behavior such as the expansion ratio and the bouncing motion after the first collapse under ultrasound depends crucially on the retarded time of the bubble motion to the applied ultrasound.

  • PDF

INVESTIGATION OF DRAG REDUCTION MECHANISM BY MICROBUBBLE INJECTION WITHIN A CHANNEL BOUNDARY LAYER USING PARTICLE TRACKING VELOCIMETRY

  • Hassan Yassin A.;Gutierrez-Torres C.C.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.763-778
    • /
    • 2006
  • Injection of microbubbles within the turbulent boundary layer has been investigated for several years as a method to achieve drag reduction. However, the physical mechanism of this phenomenon is not yet fully understood. Experiments in a channel flow for single phase (water) and two phase (water and microbubbles) flows with various void fraction values are studied for a Reynolds number of 5128 based on the half height of the channel and bulk velocity. The state-of-the art Particle Tracking Velocimetry (PTV) measurement technique is used to measure the instantaneous full-field velocity components. Comparisons between turbulent statistical quantities with various values of local void fraction are presented to elucidate the influence of the microbubbles presence within the boundary layer. A decrease in the Reynolds stress distribution and turbulence production is obtained with the increase of microbubble concentration. The results obtained indicate a decorrelation of the streamwise and normal fluctuating velocities when microbubbles are injected within the boundary layer.

A Removal Efficiency from Fundamental Characteristics of Microbubbles and Particles in Electroflotation (전해부상법에서 미세기포와 입자의 기초특성 연구를 통한 제거효율)

  • Dockko, Seok;Kim, Wontae;Han, Mooyoung;Kim, Mikyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.161-172
    • /
    • 2005
  • Recently, water treatment methods utilizing microbubbles such as DAF and EF are gaining interest and being studied. Current study is focused on the fundamental research of electroflotation by examining the characteristics of microbubbles and particles. The objects of this research consist of two things; (1) theoretical modeling of microbubble-particle collision, (2) the experimental investigation of removal efficiency of turbidity in electroflotation. From investigation, the mechanism of electroflotation can be explained not only by the characteristics of microbubbles and particles but also the chemistry of aluminum dissolved from aluminum electrode during the electroflotation experiment.

A Study on the Viscous Frictional Drag Reduction by a Split Microbubble Injection System (미소기포 분할 분출장치에 의한 점성 마찰저항 감소화 연구)

  • Kwon, Sun-Young;Kim, Si-Young;Hong, Bong-Ki
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.10 no.1
    • /
    • pp.63-68
    • /
    • 1998
  • The microbubble splits injection system are improved for the enhancement efficiency of viscous frictional drag reduction. It was confirmed that the experimental results is effective more than Mercle's[7] using the present system in the comparisons. And the new experimental equation is derived to get viscous frictional drag reduction useful for the present experimental data. The new experimental equation approaches Mercle's[7] experimental data wel.

  • PDF

Thickening of Activated Sludge Using Low Pressure Flotation Pilot System (파일롯 규모의 저압형 부상장치를 이용한 하수슬러지 농축에 관한 연구)

  • Kim, Ji Tae;Oh, Joon Taek;Kim, Jong Kuk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.3
    • /
    • pp.172-177
    • /
    • 2014
  • Low pressure air flotation (LAF) pilot plant for sludge thickening was installed in Chung Nam N.S. municipal waste water treatment plant to verify its application possibility. Effects of operating conditions such as coagulant dosages and microbubble water ratio on thickening of the mixed sludge were examined. Microbubbles which were generated in the chamber of $1.5kgf/cm^2$ by high speed collision method with foaming agent were used to float sludge. Solid loading of $30kg/m^2/hr$, solid contents in thickened sludge of 60,300 mg/L and SS removal efficiency of 99% were obtained through long period operating LAF in conditions of mixed sludge concentration of 14,400 mg/L, coagulant dosage of 27.6 mg/L, foaming agent addition of 4.0 mg/L and microbubble water injection ratio of 9.7%.

Effect of Chemical Conditioning on Flotation and Thickening Properties of Sludge using a Microbubble Generating Pump (화학적 개량이 미세기포 발생펌프를 이용한 슬러지 부상농축에 미치는 영향)

  • Lee, Chang-Han;Ahn, Kab-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.641-648
    • /
    • 2009
  • The study presents sewage sludge flotation and thickening efficiencies which changes chemical conditioning and mixing conditions using a flotation thickening system with a microbubble generating pump. Flotation and thickening of sewage sludge are shown to significantly influence kinds of coagulants more than Gt values. It is found that the flotation and thickening efficiencies for kinds of coagulants follows the order: $Al_2(SO_4)_3$ < PSO-M < $Fe_2(SO_4)_3$. We shows that the flotation thickening system(1.6 $m^3$/d) could be continuously operated during two hours on operation conditions in the lab-scale experiments. Sludge thickening efficiency in the A/S ratio of 0.029 - 0.019 mL/mg was found to be very efficient, reaching to 300.0~335.7%.

Simultaneous nitrification and denitrification by using ejector type microbubble generator in a single reactor

  • Lim, Ji-Young;Kim, Hyun-Sik;Park, Soo-Young;Kim, Jin-Han
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.251-257
    • /
    • 2020
  • This study was performed to verify the possibility of nitrification and denitrification in a single reactor. In batch type experiment, optimal point of experimental conditions could be found by performing the experiments. When supply location of microbubbles was located at half of width of the aeration tank and operating pressure of 0.5 bar, it was possible for zones in the aeration tank to be separated into anoxic and aerobic by controlling air suction rate according to operating pressure of the generator. To be specific, the concentration of dissolved oxygen (DO) in zone 1 and 2 of the aeration tank could be maintained as less than 0.5 mg/L. Also, in the case of concentration of oxygen in zone 3 and 4, the concentration of DO was increased up to 1.7 mg/L due to effects of microbubbles. In continuous flow type experiment based on the results of batch type experiments, the removal efficiency of nitrogen based on T-N was observed as 39.83% at operating pressure of 0.5 bar and 46.51% at operating pressure of 1 bar so it was able to know that sufficient air suction rate should be required for nitrification. Also, denitrification process could be achieved in a single reactor by using ejector type microbubble generator and organic matter and suspended solid could be removed. Therefore, it was possible to verify that zones could be separated into anoxic and aerobic and nitrification and denitrification process could be performed in a single reactor.

Visualization of Microbubbles Affecting Drag Reduction in Turbulent Boundary Layer (마찰저항 감소에 영향을 주는 난류 경계층 내 미세기포(microbubble)의 가시화 연구)

  • Paik, Bu-Geun;Yim, Geun-Tae;Kim, Kwang-Soo;Kim, Kyoung-Youl;Kim, Yoo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.356-363
    • /
    • 2015
  • Microbubbles moving in the turbulent boundary layer are visualized and investigated in the point of frictional drag reduction. The turbulent boundary layer is formed beneath the surface of the 2-D flat plate located in the tunnel test section. The microbubble generator produces mean bubble diameter of 30 – 50 μm. To capture the micro-bubbles passing through the tiny measurement area of 5.6 mm2 to 200 mm2, the shadowgraphy system is employed appropriately to illuminate bubbles. The velocity field of bubbles reveals that Reynolds stress is reduced in the boundary layer by microbubbles’ activity. To understand the contribution of microbubbles to the drag reduction rate more, much smaller field-of-view is required to visualize the bubble behaviors and to find the 2-D void fraction in the inner boundary layer.

Simultaneous Removal of Organic Pollutants, N, P, and Antibiotics from Liquid Fertilizer using a Microbubble and Catalyst Coupling System (마이크로버블/촉매 융합 시스템을 이용한 액비 내 유기오염물질, N, P 및 항생제 동시 제거)

  • Lee, Dong Gwan;Sim, Young Ho;Paek, Yee;Kwon, Jin Kyung;Jang, Jae Kyung
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.983-991
    • /
    • 2019
  • This study investigated the use of a hydroxyl-radicals-generated microbubble/catalyst (MB/Cat) system for removing organic pollutants, nitrogen, and phosphorous from liquid fertilizer produced by livestock wastewater treatment. Use of the MB/Cat system aims to improve the quality of liquid fertilizer by removing pollutants originally found in the wastewater. In addition, a reduction effect has been reported for antibiotics classified as representative non-biodegradable matter. Samples of liquid fertilizer produced by an aerobic biological reactor for swine wastewater treatment were first analyzed for initial concentrations of pollutants and antibiotics. When the MB/Cat system was applied to the liquid fertilizer, TCOD, TOC, $BOD_5$, and $NH_3-N$, and $PO_4-P$ removal efficiencies were found to be approximately 52%, 51%, 30%, 21%, and 66%, respectively. Additionally, Amoxicillin hydrate was removed by 10%, and Chlortetracycline HCl and Florfenicol were not present at detectable levels These findings confirm that the MB/Cat system can be used with livestock wastewater treatment to improve liquid fertilizer quality and to process wastewater that is safe for agricultural re-use.

Synergistic antibacterial effect of disinfectants and microbubble water to Salmonella Typhimurium

  • Seung-Won, Yi;Young-Hun, Jung;Sang-Ik, Oh;Han Gyu, Lee;Yoon Jung, Do;Eun-Yeong, Bok;Tai-Young, Hur;Eunju, Kim
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.4
    • /
    • pp.277-284
    • /
    • 2022
  • Salmonella is a pathogenic bacterium that has long been important industrially because it has a wide host range and can be transmitted to humans through direct contact as well as indirect contact such as food contaminated with animal waste. Understanding how to reduce Salmonella contamination in pig farms is important for public health and the livestock industry from an economic perspective. In the swine industry, high concentrations of disinfectants have been applied because it is difficult to effectively control Salmonella in environments contaminated with organic substances. In order to evaluate the synergetic effect of disinfectants, the efficacy of two commercial disinfectants diluted in hard water and microbubble water (MBW) were compared under the laboratory condition. Different concentrations of both disinfectants combined with 1% detergent diluted in the two diluents were evaluated for their antibacterial effect. In the case of monopersulfate-based disinfectant groups, the growth of Salmonella was not observed at 1:200 dilution with both the hard water and MBW combined with 1% detergent. In the case of citric acid-based disinfectant, the bacterial growth was not observed at 1:800 dilution with MBW combined with 1% detergent. Our results show that the use of MBW as a diluent might improve the biological activities of acid-based disinfectant.