• Title/Summary/Keyword: microbody

Search Result 13, Processing Time 0.026 seconds

Intracellular Localization and Developmental Changes of Purine Catabolic Enzymes during Germination in Cotyledons of Rape Seedlings (발아중 유채자엽 퓨린 분해효소의 활성변화 및 세포내 위치)

  • 권덕기
    • Journal of Plant Biology
    • /
    • v.28 no.3
    • /
    • pp.225-232
    • /
    • 1985
  • Intracellular localization and the developmental changes in activities of uricase and allantoinase during germination were investigated with the cotyledons of rape(Brassica napus L.) seedlings. The development anddisappearance of uricase activity took place independently of light, but allantoinase activity was increased by light. The temporal pattern of uricase activity showed that uricolysis was actively taking place in the cotyledons during their early stages of germination. While uricase can be localized in the microbody fraction isolated from crude organelle extracts of the cotyledons by density gradient centrifugation, most of the allantoinase activity found in the microbody fraction did not appear to be an integral part of the microbody.

  • PDF

Effect of Light on Development of Microbody Functions in the Cotyledons of Rape (Brassica napus L.) Seedlings (유채 종자의 Microbody 기능 발달에 미치는 빛의 영향)

  • 피문자
    • Journal of Plant Biology
    • /
    • v.25 no.2
    • /
    • pp.73-81
    • /
    • 1982
  • The changes in activities of glyoxysomal and peroxisomal enzymes during the transition from fat degradation to photosynthesis were investigated with the cotyledns of rape (Brassica napus L.) seedlings. The development and disappearance of glyoxysomal enzyme (isocitrate lyase, EC 4.1.3.1; malate dehydrogenase, EC 1.1.1.37; catalase, EC 1.11.1.6) activities took place independently of light. It is concluded that the mobilization of storage fat is independent of photomorphogenesis. During early periods of development in the dark of light (days 1 through 3), the glyoxysomal enzyme activities were relatively high and the enzyme activities rose to a peak at 3rd day after sowing. Thereafter, the activities decreased gradually. While glyoxysomal enzyme activities were dropping, the peroxisomal enzyme (glycolate oxidase, EC 1.1.3.1) activities were increasing rapidly during the transition period in the light. Moreover, the changes of enzyme activities of the common microbody marker, catalase, indicated both functional patterns. The enzyme patterns in rape cotyledons indicate that the glyoxysomal function of microbodies is replaced by the peroxisomal function of these organelles during the transition from fat degradation to photosynthesis.

  • PDF

Electron Microscopic Studies on Microbody of Panax ginseng (인삼(人蔘)의 Microbody에 관(關)한 전자현미경적(電子顯微鏡的) 연구(硏究))

  • Kim, Woop-Kap;Lee, Bong-Hee;Oh, Chong-Yon
    • Applied Microscopy
    • /
    • v.2 no.1
    • /
    • pp.33-37
    • /
    • 1972
  • The distribution, ultrastructure, and cytochemical properties of microbodies (peroxisomes) from the main roots and mature leaves of Panax ginseng were studied by electron microscopy included the activity of catalase in 3, 3'-diaminobenzidine (DAB) medium at pH 9, using glutaraldehyde-fixed tissues. The microbodies, which are about $0.5{\sim}1.5{\mu}$ diameter, were described from mesophyll cells of mature leaves and storage cells and cambial cells of main roots. The microbodies of the ginseng include the coreless, homogeneous matrix, in which catalase activities are present.

  • PDF

Effect of Light on Developmental Changes and Activities of Microbody in the Cotyledons of Radish Seedlings (발아중 빛에 의한 무 유식물의 자엽 Microbody의 활성 변화)

  • 박민철
    • Journal of Plant Biology
    • /
    • v.29 no.4
    • /
    • pp.243-254
    • /
    • 1986
  • The enzyme patterns and the food storage changes in radish (Raphanus sativus L. cv. Taewang) cotyledons during seedling development were studied. The radish seeds were germinated for 8 days at $25^{\circ}C$ under light (7, 000 lux) or dark condition. The lipid and protein contents per seed were 4.3 mg and 2.85 mg respectively. In 8-day-old light-grown seedling, the lipid and protein contents per cotyledon pair were 1.5 mg and 2.08 mg; in 8-day-old dark-grown seedling, they were 0.8 mg and 1.24 mg respectively. The heterotrophic phase of seedlings continued for 3 days after sowing and followed by autotrophic phase (3~6 day) and senescence phase (6~8 day). The food storage function decreased in response to time course. During heterotrophic phase, the activities of glyoxysomal enzymes (malate synthetase, isocitrate lyase, and catalase) were high at 2~3 day. Those patterns were somewhat more prominent in darkness. During the autotrophic phase, the activities of peroxysomal enzymes (glycolate oxidase and catalase) increased at 4~5 day.

  • PDF

Ultrastructural Changes and Formation of Storage Materials in Endosperm Cells during the Seed Formation of Panax ginseng C.A. Meyer (인삼(Panax ginseng C.A. Meyer)의 종자형성에 있어서 배유세포의 미세구조의 변화 및 저장물질의 형성)

  • 유성철
    • Journal of Plant Biology
    • /
    • v.34 no.3
    • /
    • pp.201-213
    • /
    • 1991
  • This study has been carried out to investigate the ultrastructural changes, formation of storage materials in endosperm cells with electron microscope during the seed formation of Panax ginseng C.A. Meyer. In the early stage of seed formation with green seed coat, the endosperm was cellular type. Cell plate was largely composed of dictyosome vesicles in early stage of wall formation after mitosis. Central vacuole was gradually subdivided into several small-sized vacuoles. During the differentiation of plastids, some proplastid was replaced by amyloplast with starch grains and lamellar structure. A number of mitochondria with well developed cristae were distributed in cytoplasm. Rough endoplasmc reticulum, dictyosome, microbody, free ribosomes and polysomes were evenly distributed in cytoplasm. Spherical spherosomes were formed from dictyosome containing the lipid materials of even electron density. Protein bodies were formed by interfusing between vacuoles and vesicles derived from rough endoplasmic reticulum which contained the amorphous protein of high electron density.

  • PDF

Ultrastructural Changes in the Cortical Cell Mulberry Trees(Morus)during Wintering Period (越冬期 뽕나무 가지 皮層部 細胞內 微細構造의 變化)

  • 최영철;유근섭;안영희
    • Journal of Sericultural and Entomological Science
    • /
    • v.40 no.2
    • /
    • pp.91-96
    • /
    • 1998
  • In relation to cold acclimation, this experiment was carried out to understand the changes of the cortical cells in the living barks of the mulberry during wintering period. The living barks of three mulberry varieties(Kaeryangppong, Shinilppong and Yongcheonppong) were sampled from December, 1995 to March, 1996. The result of this experiment was summarized as follows. The cortical cells in the living barks of the mulberry in December were filled with small vacuoles. Plastids and mitochondrias were located near the nucleus. At this time, almost all starch granules disappeared from the plastids. In January and February, mitochondria, palstids and microbodys of the cortical cell were observed. As increasing temperature from March, dictysomes and polysomes were sparse. Again, starch granules disappeared were observed in the plastids. From the above result. starch granules in plastide of the cortical cell of the mulberry disappeared during cold acclimation stage. After late January, Proplastid was observed in the cortical cell and the ultrastructures of cortical cell were actively changed.

  • PDF

Geness for degradation of storage oil and their application to oil biotechnology

  • Nishimura, Mikio;Hayashi, Makoto;Kato, Akira;Mano, Shoji;Hayashi, Hiroshi;Yamaguchi, Katushi;Nito, Kazumasa;Fukao, Youichiro
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.37-40
    • /
    • 1999
  • cDNAs for long- and short-chain acyl-CoA oxidases in fatty acid $\beta$-oxidation were isolated and were characterized their enzymatical and molecular properties. Both oxidases were exclusively localized in glyoxysomes, indicating that glyoxysomes can completely metabolize fatty acids to acyl-CoA by their cooperative action. In order to clarify the regulatory mechanisms underlying degradation of storage oil, we tried to obtain glyoxysome-deficient mutants of Arabidopsis. We screened 2,4-dichlorophenoxybutyric acid (2,4-DB) mutants of Arabidopsis which have defects in glyoxysomal fatty acid $\beta$-oxidation. Four mutants can be classified as carrying alleles at three independent loci, which we designated pedl, ped2, and ped3, respectively (where ped stands for peroxisome defective). The characteristics of these ped mutants are described.

  • PDF

The glyoxysomal nature of microbodies complexed with lipid globules in Botryospheria dothidea.

  • Kim, K.W;Park, E.W.;Kim, K.S.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.119.1-119
    • /
    • 2003
  • The glyoxysomal nature of microbodies was determined in Botryosphaeria dothidea hyphae based on morphology and in situ enzyme characteristics by transmission electron microscopy and cytochemistry. Bound by a single membrane, microbodies had a homogeneous matrix and varied in size ranging from 200 to 400 m in diameter. Microbodies had crystalline inclusion(s) which consisted of parallel arrays of fine tubules in their matrices. Microbodies and lipid globules were frequently placed in close association with each other, forming microbody-lipid globule complexes in hyphae. The cytochemical activities of catalase and malate synthase were localized in matrices of microbodies, showing intense electron-density of the organelle. In addition, the immunogold labeling detected the presence of catalase in multivesicular bodies and hyphal cell walls as well as in matrices and crystalline inclusions of microbodies, supporting the enzyme secretion through cell walls. Meanwhile, isocitrate Iyase was localized only in matrices of microbodies. These results suggest that microbodies, particularly complexed with lipid globules, in the fungal hyphae are functionally defined as glyoxysomes, where glyoxysomal enzymes are biochemically active for the glyoxylate cycle to be a metabolic pathway in gluconeogenesis. (Mycology and Fugus Diseases)

  • PDF

Changes of Catalase and Peroxidase Activities with Indole Acetic Acid in the Dormant Bark of Populus euramericana cv. gelrica (휴면기간중(休眼期間中)의 Populus euramericana cv. gelrica 수피(樹皮) 조직내(組織內)에서 일어나는 과산화물제거산소(過酸化物除去酸素) 활성(活性) 및 식물(植物) 호르몬의 변화(變化)에 관한 연구(硏究))

  • Ahn, Young-Hee;Yoo, Won-Hyung;Lee, Kee-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.61-66
    • /
    • 1989
  • 포플라 세포(細胞)의 Sucrose gradient 원심분리(遠心分離)에 나타난 세포(細胞)분획은 6개의 band 및 침전으로 분리(分離) 되었다. Peroxidase의 활성변화(活性變化)는 휴면기(休眼期)에 높아졌으며, 자발적(自發的) 휴면(休眠)이 타파되면서 낮아지기 시작하였다. 휴면기(休眠期)에 급격히 높아진 Peroxidase 활성(活性)은 Peroxidative 활성(活性)을 지닌 세포내(細胞內) Microbody에 존재(存在)하는 것으로 사료된다. Catalase의 활성(活性)은 11월(月), 12 월(月) 1월(月)의 휴면기(休眼期)에 활성(活性)이 낮았으며. IAA의 농도는 휴면초기(休眼初期)에 감소하기 시작하여, 12월(月)에 최저(最低)가 되었다. 자연휴면(自然休眠)이 타파된 1월(月)부터는 IAA 농도가 증가하기 시작하여 4월(月)의 발아기(發芽期)까지 계속되었다. 이와같은 Peroxidase, Catalase를 비롯한 IAA의 변화(變化)는 봄철의 발아(發芽) 및 재생장(再生長)과 가을철 휴면조절(休眠調節)에 영향을 미치는 것으로 사료된다.

  • PDF

Purification and Characterization of Glutathione Peroxidase Isolated from Rat Erythrocyte and Histochemical Study of its Localization in Liver of White Rat (흰쥐 적혈구에 있는 Glutathione Peroxidase의 순화 및 성질과 간에서의 용작부위에 대한 조직화학적 연구)

  • 최임순;최춘근
    • The Korean Journal of Zoology
    • /
    • v.29 no.2
    • /
    • pp.141-158
    • /
    • 1986
  • A glutathione peroxidase from white rat (Wistar strain)erythrocytes was partially purified and characterized. In addition, localization of this enzyme in the liver was studied by histochemical method. A glutathione peroxidase was purified approximately 33.5-folds by ammonium sulfate precipitation, Sephadex filtration column and DEAE-Sephadex column chromatography. The optimum temperature of the crude glutathione peroxidase was $40^\\circC$, and the optimum pH was 7.5. This crude glutathione peroxidase was most stable at $30^\\circC$ and the values of Km and Vmax were calculated to be 8.5mM and 15.6 $\\mu$moles/min for glutathione, and 40 $\\mu$M and 10.5 $\\mu$moles/min for hydrogen peroxide, respectively. The molecular weight of this enzyme was estimated by Sephadex G-200 gel filtration to be approximately 90, 000. By electron microscopic examination, histochemical reaction products were microbodies that were prominent in the peripheral parts of the lobule. The reaction products exhibited round shapes, the diameter of which varied $0.2\\sim0.7 \\muM$ and their boundary membranes were not distint.

  • PDF