• Title/Summary/Keyword: microbiome

Search Result 304, Processing Time 0.029 seconds

Comparative Microbiome Analysis of Three Species of Laboratory-Reared Periplaneta Cockroaches

  • Lee, Seogwon;Kim, Ju Yeong;Yi, Myung-hee;Lee, In-Yong;Lee, Won-Ja;Moon, Hye Su;Yong, Dongeun;Yong, Tai-Soon
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.5
    • /
    • pp.537-542
    • /
    • 2020
  • Cockroaches inhabit various habitats, which will influence their microbiome. Although the microbiome can be influenced by the diet and environmental factors, it can also differ between species. Therefore, we conducted 16S rDNA-targeted high-throughput sequencing to evaluate the overall bacterial composition of the microbiomes of 3 cockroach species, Periplaneta americana, P. japonica, and P. fuliginosa, raised in laboratory for several generations under the same conditions. The experiments were conducted using male adult cockroaches. The number of operational taxonomic units (OTUs) was not significantly different among the 3 species. With regard to the Shannon and Pielou indexes, higher microbiome values were noted in P. americana than in P. japonica and P. fuliginosa. Microbiome composition was also evaluated, with endosymbionts accounting for over half of all OTUs in P. japonica and P. fuliginosa. Beta diversity analysis further showed that P. japonica and P. fuliginosa had similar microbiome composition, which differed from that of P. americana. However, we also identified that P. japonica and P. fuliginosa host distinct OTUs. Thus, although microbiome compositions may vary based on multiple conditions, it is possible to identify distinct microbiome compositions among different Periplaneta cockroach species, even when the individuals are reared under the same conditions.

A Pilot Study Exploring Temporal Development of Gut Microbiome/Metabolome in Breastfed Neonates during the First Week of Life

  • Imad Awan;Emily Schultz;John D. Sterrett;Lamya'a M. Dawud;Lyanna R. Kessler;Deborah Schoch;Christopher A. Lowry;Lori Feldman-Winter;Sangita Phadtare
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.26 no.2
    • /
    • pp.99-115
    • /
    • 2023
  • Purpose: Exclusive breastfeeding promotes gut microbial compositions associated with lower rates of metabolic and autoimmune diseases. Its cessation is implicated in increased microbiome-metabolome discordance, suggesting a vulnerability to dietary changes. Formula supplementation is common within our low-income, ethnic-minority community. We studied exclusively breastfed (EBF) neonates' early microbiome-metabolome coupling in efforts to build foundational knowledge needed to target this inequality. Methods: Maternal surveys and stool samples from seven EBF neonates at first transitional stool (0-24 hours), discharge (30-48 hours), and at first appointment (days 3-5) were collected. Survey included demographics, feeding method, medications, medical history and tobacco and alcohol use. Stool samples were processed for 16S rRNA gene sequencing and lipid analysis by gas chromatography-mass spectrometry. Alpha and beta diversity analyses and Procrustes randomization for associations were carried out. Results: Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the most abundant taxa. Variation in microbiome composition was greater between individuals than within (p=0.001). Palmitic, oleic, stearic, and linoleic acids were the most abundant lipids. Variation in lipid composition was greater between individuals than within (p=0.040). Multivariate composition of the metabolome, but not microbiome, correlated with time (p=0.030). Total lipids, saturated lipids, and unsaturated lipids concentrations increased over time (p=0.012, p=0.008, p=0.023). Alpha diversity did not correlate with time (p=0.403). Microbiome composition was not associated with each samples' metabolome (p=0.450). Conclusion: Neonate gut microbiomes were unique to each neonate; respective metabolome profiles demonstrated generalizable temporal developments. The overall variability suggests potential interplay between influences including maternal breastmilk composition, amount consumed and living environment.

Association between LEPR Genotype and Gut Microbiome in Healthy Non-Obese Korean Adults

  • Yoon Jung Cha;In Ae Chang;Eun-Heui Jin;Ji Hye Song;Jang Hee Hong;Jin-Gyu Jung;Jung Sunwoo
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.146-153
    • /
    • 2024
  • The LEPR (leptin receptor) genotype is associated with obesity. Gut microbiome composition differs between obese and non-obese adults. However, the impact of LEPR genotype on gut microbiome composition in humans has not yet been studied. In this study, the association between LEPR single nucleotide polymorphism (rs1173100, rs1137101, and rs790419) and the gut microbiome composition in 65 non-obese Korean adults was investigated. Leptin, triglyceride, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol levels were also measured in all participants. Mean ± SD (standard deviation) of age, body mass index, and leptin hormone levels of participants was 35.2 ± 8.1 years, 21.4 ± 1.8 kg/m2, and 7989.1 ± 6687.4 pg/mL, respectively. Gut microbiome analysis was performed at the phylum level by 16S rRNA sequencing. Among the 11 phyla detected, only one showed significantly different relative abundances between LEPR genotypes. The relative abundance of Candidatus Saccharibacteria was higher in the G/A genotype group than in the G/G genotype group for the rs1137101 single nucleotide polymorphism (p=0.0322). Participant characteristics, including body mass index, leptin levels, and other lipid levels, were similar between the rs1137101 G/G and G/A genotypes. In addition, the relative abundances of Fusobacteria and Tenericutes showed significant positive relationship with plasma leptin concentrations (p=0.0036 and p=0.0000, respectively). In conclusion, LEPR genotype and gut microbiome may be associated even in normal-weight Korean adults. However, further studies with a greater number of obese adults are needed to confirm whether LEPR genotype is related to gut microbiome composition.

Fetal and preterm infant microbiomes: a new perspective of necrotizing enterocolitis

  • Choi, Yong-Sung;Song, In Gyu
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.10
    • /
    • pp.307-311
    • /
    • 2017
  • Necrotizing enterocolitis (NEC) is a devastating condition of hospitalized preterm infants. Numerous studies have attempted to identify the cause of NEC by examining the immunological features associated with pathogenic microorganisms. No single organism has proven responsible for the disease; however, immunological studies are now focused on the microbiome. Recent research has investigated the numerous bacterial species residing in the body and their role in diseases in preterm infants. The timing of initial microbial colonization is a subject of interest. The microbiome appears to transfer from the mother to the newborn, as well as to the fetus. Cross-talk between the fetus and fetal microbiome takes place continuously to generate a unique immune system. This review examined the transfer of the microbiome to the human fetus, and its potential relationship with NEC.

Analysis of Research Trend in Human Microbiome (Human Microbiome 연구개발 동향분석)

  • Park, Jung-Min;Lee, Ji-Hye;Hong, Seok-In
    • Food Science and Industry
    • /
    • v.47 no.2
    • /
    • pp.80-91
    • /
    • 2014
  • 식품분야는 기술의 발전속도가 비교적 빠르지 않으나 적용범위가 광범위하므로 정량적인 분석 방법을 도입하여 연구트렌드를 분석함으로써 연구테마 및 아이템을 발굴하는데 시사점을 제공 할 수 있다. 미국 NIH에서는 인체 미생물체의 메타지노믹스 연구를 시작하는 등 선진국을 중심으로 제2의 휴먼지놈프로젝트라고 불리는 장내미생물 균총에 대한 연구결과가 속속 제시되고 있다. 이런 측면에서 human microbiome 연구동향을 분석하여 식품 관련연구에 활용하기 위해 특허와 논문의 서지정보를 활용하여 정량적인 분석을 시도하였다. 분석대상은 1992년 이후로 2011년 말까지 전세계에 출원된 human microbiome 관련 특허와 논문을 대상으로 하였고, 분석프로그램은 Thomson Reuters에서 제공하는 Thomson Innovation을 사용하였다.

Research Trends of Acupuncture-Related Therapy on Microbiome in Musculoskeletal Disorders

  • Joo-Hee Kim
    • Journal of Acupuncture Research
    • /
    • v.40 no.2
    • /
    • pp.129-134
    • /
    • 2023
  • In this review, we searched for clinical and experimental studies related to acupuncture-related therapy (ART) on the microbiome in musculoskeletal disorders (MSDs) through the electronic databases of MEDLINE via PubMed, EMBASE, and Oriental Medicine Advanced Searching Integrated System up to May 2023, without language restriction, and after the selection/exclusion process, the study design, target disease, intervention details, treatment period, outcomes, and study results were extracted. A total of 8 articles were selected. Two randomized controlled trials and 6 animal studies evaluated knee osteoarthritis, rheumatoid arthritis, spinal cord injury, ankylosing spondylitis, and osteoporosis. ART, including electroacupuncture, thread-embedding acupuncture, and moxibustion, affected microbiome modulation in MSDs. The results reveal that ART could be a potential treatment for regulating the microbiome in MSDs. However, further high-quality studies are needed.

Translational gut microbiome research for strategies to improve beef cattle production sustainability and meat quality

  • Yasushi Mizoguchi;Le Luo Guan
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.346-359
    • /
    • 2024
  • Advanced and innovative breeding and management of meat-producing animals are needed to address the global food security and sustainability challenges. Beef production is an important industry for securing animal protein resources in the world and meat quality significantly contributes to the economic values and human needs. Improvement of cattle feed efficiency has become an urgent task as it can lower the environmental burden of methane gas emissions and the reduce the consumption of human edible cereal grains. Cattle depend on their symbiotic microbiome and its activity in the rumen and gut to maintain growth and health. Recent developments in high-throughput omics analysis (metagenome, metatranscriptome, metabolome, metaproteome and so on) have made it possible to comprehensively analyze microbiome, hosts and their interactions and to define their roles in affecting cattle biology. In this review, we focus on the relationships among gut microbiome and beef meat quality, feed efficiency, methane emission as well as host genetics in beef cattle, aiming to determine the current knowledge gaps for the development of the strategies to improve the sustainability of beef production.

Toward The Fecal Microbiome Project (분변 미생물군집 프로젝트)

  • Unno, Tatsuya
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.415-418
    • /
    • 2013
  • Since the development of the next generation sequencing (NGS) technology, 16S rRNA gene sequencing has become a major tool for microbial community analysis. Recently, human microbiome project (HMP) has been completed to identify microbes associated with human health and diseases. HMP achieved characterization of several diseases caused by bacteria, especially the ones in human gut. While human intestinal bacteria have been well characterized, little have been studied about other animal intestinal bacteria. In this study, we surveyed diversity of livestock animal fecal microbiota and discuss importance of studying fecal microbiota. Here, we report the initiation of the fecal microbiome project in South Korea.

Comparison of the Performance of MiSeq and HiSeq 2500 in a Microbiome Study

  • Na, Hee Sam;Yu, Yeuni;Kim, Si Yeong;Lee, Jae-Hyung;Chung, Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.574-581
    • /
    • 2020
  • Next generation sequencing is commonly used to characterize the microbiome structure. MiSeq is commonly used to analyze the microbiome due to its relatively long read length. However, recently, Illumina introduced the 250x2 chip for HiSeq 2500. The purpose of this study was to compare the performance of MiSeq and HiSeq in the context of oral microbiome samples. The MiSeq Reagent Kit V3 and the HiSeq Rapid SBS Kit V2 were used for MiSeq and HiSeq 2500 analyses, respectively. Total read count, read quality score, relative bacterial abundance, community diversity, and relative abundance correlation were analyzed. HiSeq produced significantly more read sequences and assigned taxa compared to MiSeq. Conversely, community diversity was similar in the context of MiSeq and HiSeq. However, depending on the relative abundance, the correlation between the two platforms differed. The correlation between HiSeq and MiSeq sequencing data for highly abundant taxa (> 2%), low abundant taxa (2-0.2%), and rare taxa (0.2% >) was 0.994, 0.860, and 0.416, respectively. Therefore, HiSeq 2500 may also be compatible for microbiome studies. Importantly, the HiSeq platform may allow a high-resolution massive parallel sequencing for the detection of rare taxa.

The Role of Upper Airway Microbiome in the Development of Adult Asthma

  • Purevsuren Losol;Jun-Pyo Choi;Sae-Hoon Kim;Yoon-Seok Chang
    • IMMUNE NETWORK
    • /
    • v.21 no.3
    • /
    • pp.19.1-19.18
    • /
    • 2021
  • Clinical and molecular phenotypes of asthma are complex. The main phenotypes of adult asthma are characterized by eosinophil and/or neutrophil cell dominant airway inflammation that represent distinct clinical features. Upper and lower airways constitute a unique system and their interaction shows functional complementarity. Although human upper airway contains various indigenous commensals and opportunistic pathogenic microbiome, imbalance of this interactions lead to pathogen overgrowth and increased inflammation and airway remodeling. Competition for epithelial cell attachment, different susceptibilities to host defense molecules and antimicrobial peptides, and the production of proinflammatory cytokine and pattern recognition receptors possibly determine the pattern of this inflammation. Exposure to environmental factors, including infection, air pollution, smoking is commonly associated with asthma comorbidity, severity, exacerbation and resistance to anti-microbial and steroid treatment, and these effects may also be modulated by host and microbial genetics. Administration of probiotic, antibiotic and corticosteroid treatment for asthma may modify the composition of resident microbiota and clinical features. This review summarizes the effect of some environmental factors on the upper respiratory microbiome, the interaction between host-microbiome, and potential impact of asthma treatment on the composition of the upper airway microbiome.