• Title/Summary/Keyword: microbiological medium

Search Result 534, Processing Time 0.024 seconds

Expression of Secretion-dedicated Srb Homologue and Antifungal Activity of Bacillus lentimorbus WJ5 (Bacillus lentimorbus WJ5의 분비 전용 Srb Homologue 발현과 항진균 활성)

  • 장유신;이영근;김재성;조규성;장병일
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.135-140
    • /
    • 2003
  • Bacillus sp. secretes high levels of extracellular enzymes into the culture medium. The signal recognition particle (SRP) and the SRP receptor play a central role in targeting pre secretory proteins to the translocase. By the analysis of the DNA microarray of B. lentimorbus WJ5, it was detected that WJ5m12, antifungal activity deficient mutant induced by gamma radiation, had a down-regulated expression of the SRP receptor gene (B. subtitis srb homologue, srbL). To determine the relationship of SRP receptor to antifungal activity, srbL of B. lentimorbus WJ5 was amplified by PCR and ligated into pQE30 vector, and then transferred into WJ5m12. The transformant, WJ5m12::srbL, recovered the antifungal activity. From the 2-DE analysis, the several presecretory proteins accumulated in the mutant cell and decreased to a level of the wild type in WJ5m12::srbL. It seems that the srbL could play an important role in the secretion of the antifungal activity related proteins of B. lentimorbus WJ5.

Estrogenic Reduction of Styrene Monomer Degraded by Phanerochaete chrysosporium KFRI 20742

  • Lee Jae-Won;Lee Soo-Min;Hong Eui-Ju;Jeung Eui-Bae;Kang Ha-Young;Kim Myung-Kil;Choi In-Gyu
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.177-184
    • /
    • 2006
  • The characteristic biodegradation of monomeric styrene by Phanerochaete chrysosporium KFRI 20742, Trametes versicolor KFRI 20251 and Daldinia concentrica KFRI 40-1 was carried out to examine the resistance, its degradation efficiency and metabolites analysis. The estrogenic reduction effect of styrene by the fungi was also evaluated. The mycelium growth of fungi differentiated depending on the concentration levels of styrene. Additionally P. chrysosporium KFRI 20742 showed superior mycelium growth at less than 200 mg/l, while D. concentrica KFRI 40-1 was more than 200 mg/l. The degradation efficiency reached 99 % during one day of incubation for all the fungi. Both manganese-dependent peroxidase and laccase activities in liquid medium were the highest at the initial stage of incubation, whereas the lowest was after the addition of styrene. However, both activities were gradually recovered after. The major metabolites of styrene by P. chrysosporium KFRI 20742 were 2-phenyl ethanol, benzoic acid, cyclohexadiene-1,4-dione, butanol and succinic acid. From one to seven days of incubating the fungi, the expression of pS2 mRNA widely known as an estrogen response gene was decreased down to the level of baseline after one day. Also, the estrogenic effect of styrene completely disappeared after treatment with supernatant of P. chrysosporium KFRI 20742 from one week of culture down to the levels of vehicle.

Molecular Cloning, Chromosomal Integration and Expression of the Homoserine Kinase gene THR1 of Saccharomyces cerevisiae (트레오닌 생합성에 관여하는 효모유전자 THR1의 클로님, 염색체통합 및 발현)

  • 최명숙;이호주
    • Korean Journal of Microbiology
    • /
    • v.29 no.1
    • /
    • pp.16-24
    • /
    • 1991
  • The yeast gene THR1 encodes the homoserine kinase (EC 2.7.1.39: HKase) which catalyses the first step of the threonine specific arm at the end of the common pathway for methionine and threonine biosynthesis. A recombinant plasmid pMC3 (12.6 kilobase pairs, vector YCp50) has been cloned into E. coli HB101 from a yeast genomic library through its complementing activity of a thr1 mutation in a yeast recipient strain M39-1D. When subcloned into pMC32 (8.6kbp, vector YRp7) and pMC35 (8.3 kbp, vector YIp5), the HindIII fragment (2.7 kbp) of pMC3 insery was positive in the thrI complementing activity in both yeast and E. coli auxotrophic strains. The linearized pMC35 was introduced into the original recipient yeast strain and the mitotically stable chromosomal integrant was identified among the transformants. Through the tetrad analysis, the integration site of the pMC35 was localized to the region of THR1 structural gene at an expected genetic distance of approximately 11.1 cM from the ARG4 locus on the right arm of the yeast chromosome VIII. When episomically introduced into the auxotrophic cells and cultured in Thr omission liquid medium, the cloned gene overexpressed the HKase in the order of thirteen to fifteenfold, as compared with a wildtype. HKase levels are repressed by addition of threonine at the amount of 300 mg/l and 1, 190 mg/l for pMC32 and pMC3, respectively. Data from genetic analysis and HKase response thus support that the cloned HindIII yeast DNA fragment contains the yeast thr1 structural gene, along with necessary regulatory components for control of its proper expression.

  • PDF

Microbial Degradation of Polyethylene Glycol (Polyethylene Glycol의 미생물학적 분해)

  • 이종근;이상준;이재동;박송희;박재림
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.329-334
    • /
    • 1986
  • The bacteria capable of utilizing polyethylene glycol(PEG) 6,000 as a sole carbon source were isolated from soil and sewage water connected to factory area. The isolate designated as EL-033 had high biodegradability on PEG 6,000, and was identified as Micrococcus sp. Micrococcus sp. EL-033 could grow on and degrade di-, tri-, tetraethylene glycols and PEGs with molecular weight up to 6,000 and very slowly stilize PEG 20,000 as sole carbon source, but not degrade ethylene glycol. The growth rate of isolate was increased in the higher molecular weight PEGs. The optical culture medium was established to be as follow: PEG 6,000, 0.2%(w/v); $K_2HPO_4$, 0.1%; $NaH_2PO_4{\cdot}12H_2O,\;0.1%\;:\;MgSO_4{\cdot}7H_2O$, 0.05%; polypeptone, 0.1% in distilled water, pH7.5. About 90% of PEG 6,000 was degraded in exponential phase of 48h culture and PEG 6,000 was completely degraded during 72h.

  • PDF

Production of Intracelluar Tyrosinase Inhibitor from Malassezia pachydermatis (Malassezia pachydermatis에 의한 세포 내 Tyrosinase 저해제의 생산)

  • Lee, Sung-Hyun;Yu, Hyung-Eun;Kwak, Yoon-Jin;Kim, Hyo-Jin;Lee, Dae-Hyoung;Lee, Jong-Soo
    • The Journal of Natural Sciences
    • /
    • v.14 no.2
    • /
    • pp.93-102
    • /
    • 2004
  • A yeast strain SL-27 found to produce active intracellular tyrosinase inhibitor was screened from 972 kinds of yeasts. It was identified as Malassezia pachydermatis based on microbiological characteristics. The optimum pH and temperature for the growth of Malassezia pachydermatis SL-27 were pH 7.0 and $37^{\circ}C$, respectively. The optimal culture conditions for the production of tyrosinase inhibitor by Malassezia pachydermatis SL-27 were investigated. The optimal medium cimposition for tyrosinase inhibitor production was determined to be 1.0% casamino acid, 2.0% glucose, 0.1% $KH_2PO_4$, 0.05% $MgSo_{4-}7H20$ and each 0.01 of $CaCl_2$ and NaCl. Optimal initial pH and temperature for the production of tyrosinase inhibitor were pH 5.0 and $30^{\circ}C$, respectively. The maximum tyrosinase inhibitory activity of 84%/mL of cell-free extract was showed after 12 h of cultivation under the optimal culturing conditions.

  • PDF

Controlled Expression and Secretion of Aspergillus oryzae Alkaline Protease in Aspergillus nidulans

  • Kim, Eun-Ah;Lee, Jeong-Goo;Whang, Mi-Kyung;Park, Hee-Moon;Kim, Jeong-Yoon;Chae, Suhn-Kee;Maeng, Pil-Jae
    • Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.95-101
    • /
    • 2001
  • In an effort to develop an efficient expression and secretion system for heterologous proteins in Aspergilius nidulans, the PCR-amplified coding sequence for alkaline pretense (AlpA) of A. oryzae was cloned into a fungal expression vector downstream of A. nidulans aicA (alcohol dehydrogenase) promoter to yield pRAAlp. Transformation of A. nidulans with pRAAlp gave stable transformants harboring various copy numbers (3 to 10) of integrated alpA gene, from among which 6 representatives were selected. On a medium containing 0.8% ammonium sulfate that represses the expression of the host's own pretense, the alcA prumoter-controlled AlpA expression was strongly induced by threonine but repressed by glucose. The level of AlpA secretion was highest (approximately 666 mU/ml) in transformant ALP6 containing the largest copy number integrated alpA. However, the level of AlpA secretion was not necessarily proportional to the copy numbers of the integrated alpA genes. The N-terminal sequence or the secreted mature AlpA was determined to be Gly-Leu-Thr-Thr-Gln-Lys-Ser and its molecular mass to be approximately 34 kDa, indicating that AlpA is properly processed by the removal of 121 N-terminal amino acids.

  • PDF

Growth Inhibition of Escherichia coli during Heterologous Expression of Bacillus subtilis Glutamyl-tRNA Synthetase that Catalyzes the Formation of Mischarged Glutamyl-$tRNA_{l}$$^{Gln}$

  • Baick, Ji-Won;Yoon, Jang-Ho;Suk Namgoong;Dieter Soll;Kim, Sung-Il;Eom, Soo-Hyun;Hong, Kwang-Won
    • Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.111-116
    • /
    • 2004
  • It is known that Bacillus subtilis glutamyl-tRNA synthetase (GluRS) mischarges E. coli $tRNA_{1}$$^{Gln}$ with glutamate in vitro. It has also been established that the expression of B. subtilis GluRS in Escherichia coli results in the death of the host cell. To ascertain whether E. coli growth inhibition caused by B. subtilis GluRS synthesis is a consequence of Glu-$tRNA_{1}$$^{Gln}$ formation, we constructed an in vivo test system, in which B. subtilis GluRS gene expression is controlled by IPTG. Such a system permits the investigation of factors affecting E. coli growth. Expression of E. coli glutaminyl-tRNA synthetase (GlnRS) also amelio-rated growth inhibition, presumably by competitively preventing $tRNA_{1}$$^{Gln}$ misacylation. However, when amounts of up to 10 mM L-glutamine, the cognate amino acid for acylation of $tRNA_{1}$$^{Gln}$, were added to the growth medium, cell growth was unaffected. Overexpression of the B. subtilis gatCAB gene encoding Glu-$tRNA^{Gln}$ amidotransferase (Glu-AdT) rescued cells from toxic effects caused by the formation of the mis-charging GluRS. This result indicates that B. subtilis Glu-AdT recognizes the mischarged E. coli Glu-$tRNA_{1}$$^{Gln}$, and converts it to the cognate Gln-$tRNA_{1}$$^{Gln}$ species. B. subtilis GluRS-dependent Glu-$tRNA_{1}$$^{Gln}$ formation may cause growth inhibition in the transformed E. coli strain, possibly due to abnormal protein synthesis.

Isolation and Characterization of a New Hydrogen Sulfide-Oxidizing Bacterium Thiobacillus Sp. (황화수소 산화세균인 새로운 Thiobacillus sp.의 분리 및 특성)

  • Cha, Jin-Myeong;Lee, In-Hwa
    • Korean Journal of Microbiology
    • /
    • v.32 no.4
    • /
    • pp.252-257
    • /
    • 1994
  • A new hydrogen sulfide-oxidation bacterium, Thiobacillus sp. was isolated from waste coal mine water around Hawsun in Chunnam province. The isolate was motile gram-negative rod shape, formed spore and grew up to be aerobically facultative chemolithotroph by using energy released from the oxidation of reduced inorganic sulfur compounds. It could assimilate various kinds of organic compounds and grew well upon thiosulfate-supplemented basal medium. To the lelvel of 32 mM in thiosulfate concentration, thiosulfate in itself was utilized as energy source for growth. However, from those of the higher concentration than 32 mM, thiosulfate functioned specifically as the substrate inhibitor rather than as the energy source. It was found that the optimum thiosulfate concentration for growth was 32 mM. The G+C content of the DNA was 65.0 mol%. The isolate had 16 : 1 + 17$_{cyc}$, 16 : 0 as their major non-hydroxylated cellular fatty acids, 3-OH 12 : 0 as a hydroxylated fatty acid and also contained unidentified $C_{18}$ branched fatty acid. The ubiquinone system in the respiratory chain was Q-9. Based on the physiological and biochemical characteristics, the isolate was assigned to a novel species of the genus Thiobacillus sp. iw.

  • PDF

Properties of Protease from Aeromonas hydrophila AM-28 Isolated from Soil (토양에서 분리된 Aeromonas hydrophila AM-28이 생산하는 단백질 가수분해효소의 특성)

  • Kim, In-Sook;Kim, Hyung-Kwoun;Lee, Jung-Kee;Bae, Kyung-Sook;Oh, Tae-Kwang
    • Korean Journal of Microbiology
    • /
    • v.32 no.4
    • /
    • pp.291-296
    • /
    • 1994
  • A bacterial strain NO. AM-28, showing proteolytic activity against defatted soybean was isolated from domestic soil. The isolated strain was identified as Aeromonas hydrophila by both the biochemical tests using API kit and the analysis of cellular fatty acid profile with MIDI system. The protease production from A. hydrophila AM-28 was highly enhanced when it was cultivated in the medium containing glycerol as a carbon source, tryptone or $(NH_4)_2HPO_4$ as a nitrogen source, and $CaCl_2$ as a mineral source. The optimal pH and temperature for the enzyme was 8.0 and $65^{\circ}C$, respectively. The enzyme was stable up to $55^{\circ}C$ and at pH values ranging from 7.0 to 13.0. The enzyme activity was inhibited by phenylmethylsulfonyl fluoride and EDTA, indicating that serine residue and metal ions be involved in enzyme activity.

  • PDF

Reevaluation of Isolation and Identification of Gram-positive Bacteria in Kimchi (김치에 서식하는 Gram 양성세균의 분리 및 동정의 재평가)

  • 임종락;박현근;한홍의
    • Korean Journal of Microbiology
    • /
    • v.27 no.4
    • /
    • pp.404-414
    • /
    • 1989
  • Attempts were made to isolate and identify Gram-positive or lactic acid bacteria in Kimchi fermentation. Species diversity depended on isolation media and temperatures, and diversity tended to be reduced with decrease of temperature. MRS and KM (natural medium prepared from Kimchi materials) were suitable respectively for isolation and present number of species. Identification of isolates was performed by dichotomous identification schemes arranged on the basis of Bergey's manual of Systematic Bacteriology (1986). Gram-positive bacteria isolated at different temperatures (5, 15, $25^{\circ}C$) were 5 species of Leuconostoc, 4 species of Streptococcus, 3 species of Pediococcus, 2 species of Bacillus and 18 species of Lactobacillus. Species with high frequency of appearance were Lactobacillus plantarum, Streptococcus raffinolactis, Leuconostoc mesenteroides subsp. mesenteroides at $25^{\circ}C$, L. plantarum, Lactobacillus fructosus, L. mesenteroides subsp. mesenteroides at $15^{\circ}C$ and L. mesenteroides subsp. mesenteroides, Leuconosotoc paramesenteroides, Lactobacillus maltaromicus at $15^{\circ}C$. In general, Kimchi fermentation was achieved by Lactobacillus spp. (59.7% frequency) at $25^{\circ}C$ and Leuconostoc spp. (65.2% frequency) at $5^{\circ}C$. Pediococcus cerevisiae and Streptococcus faecalis which have been so far known as bacteria of Kimchi fermentation were not isolated.

  • PDF