• Title/Summary/Keyword: microbial strain

Search Result 617, Processing Time 0.034 seconds

Isolation, Physico-chemical Properties and Biological Activity of Aurodox Group Antibiotics

  • Kim, Si-Kwan;Yeo, Woon-Hyung;Kim, Sang-Seock
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.265-269
    • /
    • 1996
  • An isolate of Streptomyces rochei synonym was found to produce antibiotics with narrow anti-microbial spectrum against Streptococcus and Xanthomonas sp. Among the antibiotic complex produced by the strain, the main active compound was isolated, and its physico-chemical properties and biological activities were investigated. Molecular weight of the compound was determined to be ${[M+H]}^+$ 797 (FAB-MS). UV, $^1H \;and\;^{13}C$ NMR, and IR spectra suggested that the compound is a kirromycin-like aurodox group antibiotic. However, the anti-microbial spectrum of the main compound was slightly different from that of kirromycin. In addition, it was newly found that kirromycin showed a selective anti-microbial activity against Streptococcus pyogenes and phytopathogenic Xanthomonas sp.

  • PDF

Study on the Activation of Microbial Products by Using the Leachate (침출수를 이용한 미생물 제제의 활성에 관한 연구)

  • 이장훈;정준오;남명흔
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.70-76
    • /
    • 1998
  • Activation bacteria, identified from commercial microbial products, were applied to leachate treatment. Total seven strains of bacteria Enterobacteriaceae spp. (5), Bacillus sp. (1), Aeromonas sp. (1) were seeded in the leachate and cultured in the shaking incubator at 25$^{\circ}$C and 250 rpm. While cultured, they were sampled in given time intervals and the removal rates of SS, COD, BOD, T-N.and T-P were measured an indicators of leachate treatment. Through the screening test, four of 7 strains of bacteria were considered to be effective and they were named as "effective group". The capability of leachate treatment was observed on three different groups of bacteria single, effctive, and total mixed. The result showed that the removal rates of COD and SS for the total mixed group were 64 and 71% respectively. BOD removal rate was reached nearly 99% by seeding of effective griup and removal rates of T-P and T-N were 83 and 82% respectively. However seeding of single strain was less effective than that of any mixed group in leachate treatment.

  • PDF

Microbial transformation of the sweet sesquiterpene (+)-hernandulcin

  • Yang, Hyun-Ju;Kim, Hyun-Jung;Whang, Yun-Ae;Choi, Jung-Kap;Lee, Ik-Soo
    • Natural Product Sciences
    • /
    • v.5 no.3
    • /
    • pp.151-153
    • /
    • 1999
  • (+)-Hernandulcin is a sweet bisabolane-type sesquiterpene first isolated from Lippia dulcis Trev. (Verbenaceae). This oily compound is 1000-1500 times sweeter than sucrose but with poor solubility in water. Microbial transformation was employed to improve its water solubility, and a variety of microorganisms were screened for their ability to convert (+)-hernandulcin to more polar metabolites. Scale-up fermentation with Glomerella cinguiata, a fungal strain, has resulted in the isolation of a more polar metabolite (2).

  • PDF

Studies on Stability and Quantitation of a Mixed Preparation of Lactic Acid Bacteria (유산균(乳酸菌) 혼합(混合) 제제(製劑)의 안정성(安定性) 및 분리(分離) 정량(定量)에 관한 연구)

  • Kim, Jung-Woo;Choi, Eung-Chil;Kim, Byong-Kak
    • Korean Journal of Pharmacognosy
    • /
    • v.15 no.1
    • /
    • pp.39-42
    • /
    • 1984
  • To examine stability and a separate quantitative method of a mixed preparation of lactic acid bacteria, a capsule containing Lactobacillus acidophilus, Lactobacillus bulgaricus and Streptococcus thermophilus was suspended and diluted in sterile water. After the diluted suspension was spread on three media of tryptone glucose extract agar, MRS agar and MRS-sucrose agar, their colonies appeared and were counted. The viable counts exceeded the minimum number of the three bacteria and showed that the mixed preparation was stable at least for 18 months. The results also showed that a separate quantitation of viable cells of the each strain was feasible.

  • PDF

Isolation and Identification of Dextranase Production Strains and Enzyme Production (Dextranase 생산균주의 분리, 동정 및 효소생산)

  • Lee, Jong-Tae;Yi, Dong-Heui;Kwak, Yi-Seong;Kim, Young-Ho;Sung, Hyun-Soon;Kim, Chan-Jo
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.405-410
    • /
    • 1995
  • In order to screen dextranase with high dextranolytic activity from microbial origins, dextranase producing fungal isolates were isolated from soil of the Taeion area. 197 strains with dextranolytic activities were isolated, out of which 3 strains with high dextranolytic activities were selected in the first screening. A strain (GR-98) with a best dextranolytic activity was selected in the second screening. The strain was identified to be similiar Aspergillus ustus by the morphological and cultural characteristics. The optimum culture temperature and initial pH for the dextranase production of the strain was 30$\circ$C and 7.0, respectively. The optimum culture medium was composed of 2% dextran, 0.3% KNO$_{3}$, 0.05% K$_{2}$HPO$_{4}$, 0.02% MgSO$_{4}$-7H$_{2}$O, 0.05% KC1, and 2.5 $\mu$g/ml pyridoxamine, and the enzyme production was maximum when the strain was subcultured at 30$\circ$C for 7 days.

  • PDF

Isolation of $\alpha$-Glucosidase Inhibitor Producing Soil Microorganism and Inhibitory Effects of Microbial Metabolites on ${\alpha}$-Glucosidase

  • Lee, Jin-Woo;Park, Sung-Sook;Kang, Byoung-Yong;Kim, Kyoung-Je;Ha, Nam-Joo
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.335.3-336
    • /
    • 2002
  • To find ${\alpha}$-Glucosidase Inhibitors produced by Actinomycetes, 20 soil samples were tested and 53 Actimycetes were isolated. One of 53 Actinomycetes (strain PM718) showed very potent inhibitory activity in vitro. The morphological and physiological characteristics of strain PM 718 were investigated. The spore morphology. spore chain morphology and spore surface were observed by scanning electron microscope. The inhibitory activity of strain PM718 in vivo has been studied in mice made hyperglycemia by Streptozotocin treatment. The strain PM718 showed signficant reduction of blood glucose level(more than 30%) in mice loaded with maltose.

  • PDF

Production of Rare Monosaccharides Using Microorganisms and Their Enzymes

  • Izumori, Ken;Bhuiyan, Shakhawat Hossain
    • Food Industry And Nutrition
    • /
    • v.2 no.1
    • /
    • pp.16-21
    • /
    • 1997
  • Microbial of enzymatical methods are suitable for production of rare monosaccharides. Using oxidation and reduction ability of Microorganisms, various rare ketoses and polyols can be produced, for example D-tagatose from galagtitol by Enterobacter agglomerans strain 221e. L-tagatose from galactitol by Klebsiella pheumonias strain 40b, L-psicose from allitol by Gluconobacter frateurii IFO 3254, D-talitol from d-tagatose by Aureobasidium pullulans strain 113B, allitol from D-psicose by Enterobacter agglomerans strain 221e and so on. We can produce various rare aldoses and ketoses using aldose isomerases, for example L-galactose from L-tagatose by D-arabnose isomerase, and L-ribose from L-ribulose by L-isomerase, and so on. D-Tagatose 3-epimerase of Pseudomonas sp. ST-24 is very useful for preparationof various rare ketoses, for example D-psicose from D-fructose, D-sorbose from D-tagatose, L-fructose, from L-psicose and so on. Using polyol dehydrogenases, aldose isomerases and D-tagatose 3-epimerase, we can design the suitable for production of a certain rare monosaccharide from a suitable substrate.

  • PDF

Studies on Antibiotic Producers of Korean Soil Microbes(I) -Isolation and Antibiotic Activity of Streptomyces Strain DMC-72- (한국(韓國) 토양균(土壤菌)중 항생물질(抗生物質) 생성균(生成菌)에 관한 연구(硏究)(제1보)(第1報) -스트렙토마이세스속(屬) 균주(菌株) DMC-72호(號)의 분리(分離) 및 항균작용(抗菌作用)-)

  • Kim, Kwang-Wook;Choi, Eung-Chil;Shim, Mi-Ja;Kim, Byong-Kak
    • Korean Journal of Pharmacognosy
    • /
    • v.15 no.1
    • /
    • pp.15-23
    • /
    • 1984
  • To find antimicrobial strains of the soil microorganisms in Korea, they were isolated from the soil samples of different locations and screened for antibiotic activity against several standard microbes. An isolate among them had an antibacterial activity against gram-positive bacteria. The examination of its morphological and biochemical characteristics according to the International Streptomyces Project methods showed that it belongs to the genus Streptomyces. The strain was named DMC-72. The strain appears to be a new strain when it was compared with the species within the genus which have been so far reported. The antibiotic metabolite of the strain was produced in submerged culture method. It was found to be a quinone compound and was named soulomycin. This strain was also found to produce an ${\alpha}-amylase$ inhibitor in the submerged culture.

  • PDF

Development of Pichia stipitis Co-fermenting Cellobiose and Xylose Through Adaptive Evolution (적응진화를 활용한 cellobiose와 xylose 동시발효 Pichia stipitis의 개발)

  • Kim, Dae-Hwan;Lee, Won-Heong
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.565-573
    • /
    • 2019
  • Production of biofuels and value-added materials from cellulosic biomass requires the development of a microbial strain capable of efficiently fermenting mixed sugars. In this study, the natural xylose fermenting yeast, Pichia stipitis, was evolved to simultaneously ferment cellobiose and xylose. Serial subcultures of wild-type P. stipitis in 20 g/l cellobiose were performed to increase the rate of cellobiose consumption. A total of ten rounds of the serial subculture led to the isolation of an evolved strain fermenting cellobiose significantly faster than the parental strain. The evolved strain displayed enhanced ethanol yield from 0 to 0.4 g ethanol/g cellobiose. The evolved P. stipitis simultaneously fermented cellobiose and xylose in batch fermentation. The genetic information of our evolved P. stipitis would be valuable in the development of a microbial host for the production of biofuels and biomaterials from cellulosic biomass.

Enzymatic Transformation of Ginsenoside Rb1 by Lactobacillus pentosus Strain 6105 from Kimchi

  • Kim, Se-Hwa;Min, Jin-Woo;Quan, Lin-Hu;Lee, Sung-Young;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.291-297
    • /
    • 2012
  • Ginsenoside (ginseng saponin), the principal component of ginseng, is responsible for the pharmacological and biological activities of ginseng. We isolated lactic acid bacteria from Kimchi using esculin agar, to produce ${\beta}$-glucosidase. We focused on the bio-transformation of ginsenoside. Phylogenetic analysis was performed by comparing the 16S rRNA sequences. We identified the strain as Lactobacillus (strain 6105). In order to determine the optimal conditions for enzyme activity, the crude enzyme was incubated with 1 mM ginsenoside Rb1 to catalyse the reaction. A carbon substrate, such as cellobiose, lactose, and sucrose, resulted in the highest yields of ${\beta}$-glucosidase activity. Biotransformations of ginsenoside Rb1 were analyzed using TLC and HPLC. Our results confirmed that the microbial enzyme of strain 6105 significantly transformed ginsenoside as follows: Rb1${\rightarrow}$gypenoside XVII, Rd${\rightarrow}$F2 into compound K. Our results indicate that this is the best possible way to obtain specific ginsenosides using microbial enzymes from 6105 culture.