• Title/Summary/Keyword: microbial strain

Search Result 617, Processing Time 0.029 seconds

Complete genome sequence of biofilm-producing strain Staphylococcus xylosus S170 (생물막 생성 Staphylococcus xylosus S170 균주의 유전체 분석연구)

  • Hong, Jisoo;Roh, Eunjung
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.167-168
    • /
    • 2018
  • Here we report the complete genome sequence of Staphylococcus xylosus S170, strong biofilm-producing strain, which comprised a single circular 2,910,005 bp chromosome and 32.97% G + C content. The genome included 2,674 protein-coding sequences, 22 rRNA genes, and 57 tRNA genes. Gene analysis of S. xylosus S170 could contribute to better understanding of biofilm-forming mechanisms.

Genome Characteristics of Lactobacillus fermentum Strain JDFM216 for Application as Probiotic Bacteria

  • Jang, Sung Yong;Heo, Jaeyoung;Park, Mi Ri;Song, Min-Ho;Kim, Jong Nam;Jo, Sung Ho;Jeong, Do-Youn;Lee, Hak Kyo;Kim, Younghoon;Oh, Sangnam
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1266-1271
    • /
    • 2017
  • Lactobacillus fermentum strain JDFM216, isolated from a Korean infant feces sample, possesses the ability to enhance the longevity and immune response of a Caenorhabditis elegans host. To explore the characteristics of strain JDFM216 at the genetic level, we performed whole-genome sequencing using the PacBio system. The circular draft genome has a total length of 2,076,427 bp and a total of 2,682 encoding sequences were identified. Five phylogenetically featured genes possibly related to the longevity and immune response of the host were identified in L. fermentum strain JDFM216. These genes encode UDP-N-acetylglucosamine 1-carboxyvinyltransferase (E.C. 2.5.1.7), ErfK/YbiS/YcfS/YnhG family protein, site-specific recombinase XerD, homocysteine S-methyltransferase (E.C. 2.1.1.10), and aspartate-ammonia ligase (E.C. 6.3.1.1), which are involved in peptidoglycan synthesis and amino acid metabolism in the gut environment. Our findings on the genetic background of L. fermentum strain JDFM216 and its potential candidate genes for host longevity and immune response provide new insight for the application of this strain in the food industry as newly isolated functional probiotic.

Optimization Studies for the Production of Microbial Transglutaminase from a Newly Isolated Strain of Streptomyces sp.

  • Macedo, Juliana Alves;Sette, Lara Duraes;Sato, Helia Harumi
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.904-911
    • /
    • 2008
  • Covalent cross-links between a number of proteins and peptides explain why transglutaminase may be widely used by food processing industries. The objective of this work was optimization of the fermentation process to produce transglutaminase from a new microbial source, the Streptomyces sp. P20. The strategy adopted to modify the usual literature media was: (1) fractional factorial design (FFD) to elucidate the key medium ingredients, (2) central composite design (CCD) to optimise the concentration of the key components. Optimization of the medium resulted in not only an 86% increase in microbial transglutaminase activity as compared to the media cited in the literature, but also a reduction in the production cost. Optimal fermentation conditions - namely temperature and agitation rate - were also studied, using CCD methodology. Usual conditions of $30^{\circ}C$ and 100 rpm were within the optimal area. All other parameters for enzyme production were experimentally proven to be optimum fermentation conditions.

Discovery of D-Stereospecific Dipeptidase from Thermophilic Bacillus sp. BCS-l and Its Application for Synthesis of D-Amino Acid-Containing Peptide

  • Baek, Dae-Heoun;Kwon, Seok-Joon;Park, Jin-Seo;Lee, Seung-Goo;Mheen, Tae-Ick;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.646-649
    • /
    • 1999
  • A thermophilic bacterium producing D-stereospecific dipeptidase was isolated from Korean soil samples. The enzyme hydrolyzed the peptide bond between D-alanyl-D-alanine (D-Ala-D-Ala). The isolated bacterial strain was rod shaped, gram-positive, motile, and formed an endospore. Morphological and physiological characteristics suggested this microorganism a thermophilic Bacillus species, and was named as Bacillus sp. BCS-l. The production of D-stereospecific dipeptidase was growth-associated and optimal at $55^{\circ}C$. The enzyme was applied for the synthesis of D-amino acid-containing peptide, N-benzyloxycarbonyl-L-aspartyl-D-alanine benzyl ester (Z-L-Asp-D-AlaOBzl), as a model reaction. A thermodynamically controlled synthesis of Z-L-Asp-D-AlaOBzl was achieved in an organic solvent.

  • PDF

Isolation, Identification and Characterization of a Antidementia Acetylcholinesterase Inhibitor-Producing $Yarrowia$ $lipolytica$ S-3

  • Kang, Min-Gu;Yoon, Min-Ho;Choi, Young-Jun;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.42-46
    • /
    • 2012
  • This report describes the isolation and identification of a potent acetylcholinesterase (AChE) inhibitor-producing yeasts. Of 731 species of yeast strain, the S-3 strain was selected as a potent producer of AChE inhibitor. The selected S-3 strain was investigated for its microbiological characteristics. The S-3 strain was found to be short-oval yeast that did not form an ascospore. The strain formed a pseudomycelium and grew in yeast malt medium containing 50% glucose and 10% ethanol. Finally, the S-3 strain was identified by its physiological characteristics and 26S ribosomal DNA sequences as $Yarrowia$ $lipolytica$ S-3.

Purification and Characterization of Caseinolytic Extracellular pretense from Bacillus amyloliquefaciens S94

  • Son, Eui-Sun;Kim, Jong-Il
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.26-32
    • /
    • 2002
  • From the culture supernatant of the psychrotrophic strain of Bacillus amyloliquefaciens an extracellular serine protease was purified to apparent homogeneity by successive purification steps using QAE-Sephadex, SP-Sephadex and Sephacryl S-100 column chromatography. The pretense is monomeric, with a relative molecular mass of 23,000. It is inhibited by the serine protease inhibitor phenylmethylsulfonyl fluoride, but not by EDTA. The enzyme is most active at pH 9-10 and at $45^{\circ}C$, although it is unstable at $60^{\circ}C$.

Microbial production of coenzyme Q10

  • Suh, Jung-Woo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2006.11a
    • /
    • pp.127-130
    • /
    • 2006
  • Coenzyme Q10(CoQ10) is a biological quinine compound that is widely found in living organisms including yeast, plants, and animals. CoQ10 has two major physiological activities:(a)mitochondrial electron-transport activity and (b )antioxidant activity. Various clinical applications are also available: Parkinson's disease, Heart disease, diabetes. Because of its various application filed, the market size of CoQ10 is continuously expanding all over the world. A Japanese company, Nisshin Pharma Inc. is the first industrial producer of CoQ10(1974). CoQ10 can be produced by fermentation and chemical synthesis. In several companies, these two methods are used for the production of CoQ10:chemical synthesis - Yungjin, Daewoong, Nishin Parma; fermentation - Kaneka, Kyowa, Yungjin, etc. Researchs in microbial production of CoQ10 have several steps: screening of producing microorganisms, strain development, fermentation process, purification process, scale-up process, plant production. Several strategies are available for the strain development : Random mutation and screening, directed metabolic engineering. For the optimization of fermentation process, various conditions (nutrient, aeration, temperature, culture type, etc.) are considered. Purification is one of the most important step because the quality of final products entirely depends on its purity. The production cost will be reduced and the quality of the CoQ10 will be impoved by continuous researches in strain development, fermentation process, purification process.

  • PDF

Isolation and Identification of Cellulose-Producing Bacteria (Microbial Cellulose 생산세균의 분리 및 동정)

  • 손홍주;이오미;김용균;이상준
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.3
    • /
    • pp.134-138
    • /
    • 2000
  • Extensive screening for cellulose-producing bacteria was done using differential media. Fifty seven strains were isolated totally from the fruits and the vinegar, respectively; the isolate A9 strain from apples was selected and examined to determine its taxonomical characteristics. The bacterium was identified as the genus Acetobacter sp_ based on morphological, cultural and biochemical properties. A9 strain produced acetic acid from ethanol and decomposed acetic acid to $CO_2$ and $H_2O$. They produced dihydroxyacetone from glycerol but did not produce y-pyrone from glucose and fructose. When A9 strain was cultivated statically in Hestrin and Schramm liquid medium(HS medium). thick cellulose pellicle was formed_ Higher cellulose production was obtained in the shaken culture using HS medium at 100 rpm.

  • PDF

The effect of divalent and trivalent cations on aggregation and surface hydrophobicity of selected microorganism

  • Alias, M. Anwar;Muda, Khalida;Affam, Augustine Chioma;Aris, Azmi;Hashim, Normala
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.61-74
    • /
    • 2017
  • This study investigated the effect of various cations ($Ca^{2+}$, $Mg^{2+}$, $Al^{3+}$, $Mn^{2+}$, $Zn^{2+}$) on the autoaggregation (AAg) and surface hydrophobicity (SHb) of three different bacteria (Brevibacillus panacihumi strain (ZB1), Lysinibacillus fusiformis strain (ZB2) and Enterococcus faecalis strain (ZL)) using a 2-level factorial design. The AAg ratio was measured from the changes in the absorbance of the media. Results show that ZB2 had maximum AAg for the three bacteria investigated. A microscopic clustering of cells was observed when $Ca^{2+}$ was added to ZB2. The AAg was in the range of 62%, 58% and 34% for ZB2, ZB1 and ZL, respectively and correlated to the SHb. The aggregation and SHb of the microbial cells increased with increasing ionic strength due to the repulsive steric or overlap forces between the polymer covered surfaces. $Ca^{2+}$ demonstrated a more significant effect on aggregation and SHb of microbial cells due to an attractive binding force.

Microbial production of coenzyme Q10

  • Suh, Jung-Woo
    • 한국약용작물학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.127-130
    • /
    • 2006
  • Coenzyme Q10(CoQ10) is a biological quinine compound that is widely found in living organisms including yeast, plants, and animals. CoQ10 has two major physiological activities:(a)mitochondrial electron-transport activity and (b)antioxidant activity. Various clinical applications are also available : Parkinson's disease, Heart disease, diabetes. Because of its various application filed, the market size of CoQ 10 is continuously expanding all over the world. A Japanese company, Nisshin Pharma Inc. is the first industrial producer of CoQ10(1974). CoQ10 can be produced by fermentation and chemical synthesis. In several companies, these two methods are used for the production of CoQ10:chemical synthesis - Yungjin, Daewoong, Nishin Parma; fermentation - Kaneka, Kyowa, Yungjin, etc. Researchs in microbial production of CoQ10 have several steps: screening of producing microorganisms, strain development, fermentation process, purification process, scale-up process, plant production. Several strategies are available for the strain development : Random mutation and screening, directed metabolic engineering. For the optimization of fermentation process, various conditions (nutrient, aeration, temperature, culture type, etc.) are considered. Purification is one of the most important step because the quality of final products entirely depends on its purity. The production cost will be reduced and the quality of the CoQ10 will be impoved by continuous researches in strain development, fermentation process, purification process.

  • PDF