Browse > Article
http://dx.doi.org/10.4491/eer.2016.074

The effect of divalent and trivalent cations on aggregation and surface hydrophobicity of selected microorganism  

Alias, M. Anwar (Faculty of Civil Engineering, Universiti Teknologi Malaysia)
Muda, Khalida (Faculty of Civil Engineering, Universiti Teknologi Malaysia)
Affam, Augustine Chioma (Department of Civil Engineering, School of Engineering and Technology, University College of Technology Sarawak)
Aris, Azmi (Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia)
Hashim, Normala (Faculty of Civil Engineering, Universiti Teknologi Malaysia)
Publication Information
Abstract
This study investigated the effect of various cations ($Ca^{2+}$, $Mg^{2+}$, $Al^{3+}$, $Mn^{2+}$, $Zn^{2+}$) on the autoaggregation (AAg) and surface hydrophobicity (SHb) of three different bacteria (Brevibacillus panacihumi strain (ZB1), Lysinibacillus fusiformis strain (ZB2) and Enterococcus faecalis strain (ZL)) using a 2-level factorial design. The AAg ratio was measured from the changes in the absorbance of the media. Results show that ZB2 had maximum AAg for the three bacteria investigated. A microscopic clustering of cells was observed when $Ca^{2+}$ was added to ZB2. The AAg was in the range of 62%, 58% and 34% for ZB2, ZB1 and ZL, respectively and correlated to the SHb. The aggregation and SHb of the microbial cells increased with increasing ionic strength due to the repulsive steric or overlap forces between the polymer covered surfaces. $Ca^{2+}$ demonstrated a more significant effect on aggregation and SHb of microbial cells due to an attractive binding force.
Keywords
Aggregation; Biogranules; Cations; Surface hydrophobicity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu Y, Tay JH. State of the art of biogranulation technology for wastewater treatment. Biotechnol. Adv. 2004;22:533-563.   DOI
2 Muda K, Aris A, Salim MR, et al. Development of granular sludge for textile wastewater treatment. Water Res. 2010;44: 4341-4350.   DOI
3 Zheng X, Chen W, Zhu N, Wu D, Wang Y. Effect of Zn(Ii) on the characteristics of aerobic granules. J. Food Agric. Environ. 2011;9:497-500.
4 Kerchove AJ, Elimelech M. Calcium and magnesium cations enhance the adhesion of motile and nonmotile pseudomonas aeruginosa on alginate films. Langmuir 2008;24:3392-3399.   DOI
5 Lamprecht C. UASB granulation enhancement by microbial inoculum selection and process induction. [thesis]. Stellenbosch: Univ. of Stellenbosch; 2009.
6 Zheng X, Chen W, Zhu N, Wu D, Wang Y. Effect of Zn(Ii) on the characteristics of aerobic granules. J. Food Agric. Environ. 2011;9:497-500.
7 Mahoney EM, Varangu LK, Cairns WL, Kosaric N, Murray RGE. The effect of calcium on microbial aggregation During UASB reactor start-up. Water Sci. Technol. 1987;19:249-260.
8 Nishiyama S, Murakami Y, Nagata H, Shizukuishi S, Kawagishi I, Yoshimura F. Involvement of minor components associated with the fima fimbriae of porphyromonas gingivalis in adhesive functions. Microbiology 2007;153:1916-1925.   DOI
9 Malik A, Sakamoto M, Hanazaki S, et al. Coaggregation among nonflocculating bacteria isolated from activated sludge. Appl. Environ. Microbiol. 2003;69:6056-6063.   DOI
10 Del Re B, Sgorbati B, Miglioli M, Palenzona D. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett. Appl. Microbiol. 2000;31:438-442.   DOI
11 Lim CK, Bay HH, Aris A, Abdul Majid Z, Ibrahim Z. Biosorption and biodegradation of acid orange 7 by enterococcus faecalis strain ZL: Optimization by response surface methodological approach. Environ. Sci. Pollut. Res. Int. 2013;20:5056-5066.   DOI
12 Kee TC, Bay HH, Lim CK, Muda K, Ibrahim Z. Development of bio-granules using selected mixed culture of decolorizing bacteria for the treatment of textile wastewater. Desalin. Water Treat. 2014;54:1-8.
13 Liu Z, Liu Y, Zhang A, Zhang C, Wang X. Study on the process of aerobic granule sludge rapid formation by using the poly aluminium chloride (PAC). Chem. Eng. J. 2014;250:319-325.   DOI
14 Sondhi A, Guha S, Harendranath CS, Singh A. Effect of aluminum ($Al^{3+}$) on granulation in upflow anaerobic sludge blanket reactor treating low-strength synthetic wastewater. Water Environ. Res. 2010;82:715-724.   DOI
15 El-Mamouni R, Leduc R, Guiot SR. Influence of synthetic and natural polymers on the anaerobic granulation process. Water Sci. Technol. 1998;38:341-347.   DOI
16 Uyanik S, Sallis PJ, Anderson GK. The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR). Part I: Process performance. Water Res. 2002;36:933-943.   DOI
17 Jiang HL, Tay JH, Liu Y, Tay ST. $Ca^{2+}$ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors. Biotechnol. Lett. 2003;25:95-99.   DOI
18 Pevere A, Guibaud G, Van Hullebusch ED, Boughzala W, Lens PNL. Effect of $Na^+$ and $Ca^{2+}$ on the aggregation properties of sieved anaerobic granular sludge. Colloid. Surface. A. 2007;306:142-149.   DOI
19 De Kreuk MK, Van Loosdrecht MC. Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Sci. Technol. 2004;49:9-17.
20 Di Iaconi C, Ramadori R, Lopez A, Passino R. Aerobic granular sludge systems: The new generation of wastewater treatment technologies. Ind. Eng. Chem. Res. 2007;46:6661-6665.   DOI
21 Nguyen TP, Hilal N, Hankins NP, Novak JT. The relationship between cation ions and polysaccharide on the floc formation of synthetic and activated sludge. Desalination 2008;227:94-102.   DOI
22 Bay HH, Lim CK, Kee TC, et al. Decolourisation of acid orange 7 recalcitrant auto-oxidation coloured by-products using an acclimatised mixed bacterial culture. Environ. Sci. Pollut. Res. Int. 2014;21;3891-3906.   DOI
23 Tezuka Y. Cation-dependent flocculation in a flavobacterium species predominant in activated sludge. Appl. Microbiol. 1969;17:222-226.
24 Mckinney RE, Horwood MP. Fundamental approach to the activated sludge process: I. Floc-producing bacteria. Sew. Ind. Wast. 1952;24:117-123.
25 Sobeck DC, Higgins MJ. Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res. 2002;36: 527-538.   DOI
26 Li XM, Liu QQ, Yang Q, et al. Enhanced aerobic sludge granulation in sequencing batch reactor by $Mg^{2+}$ augmentation. Biores. Technol. 2009;100:64-67.   DOI
27 Mara D, Horan NJ. Handbook of water and wastewater microbiology. 1st ed. Elsevier Science; 2003.
28 Huang L, Yang T, Wang W, Zhang B, Sun Y. Effect of $Mn^{2+}$ augmentation on reinforcing aerobic sludge granulation in a sequencing batch reactor. Environ. Biotech. 2012;93:2615-2623.   DOI
29 Lin CY, Chen CC. Toxicity-resistance of sludge biogranules to heavy metals. Biotechnol. Lett. 1997;19:557-560.
30 Higgins MJ and Novak JT. The effects of cations on the settling and dewatering of activated sludge: Laboratory experience. Water Environ. Res. 1997;69:215-224.   DOI
31 Foster PL. Stress-induced mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 2007;42:373-397.   DOI
32 Adav SS, Lee DJ. Intrageneric and intergeneric co-aggregation with acinetobacter calcoaceticus I6. J. Taiwan Inst. Chem. Eng. 2009;40:344-347.   DOI
33 Nomura T, Narahara H, Tokumoto H, Konishi Y. The role of microbial surface properties and extracellular polymer in lactococcus lactis aggregation. Adv. Powder Technol. 2009;20: 537-541.   DOI
34 Liu Y, Yang SF, Tay JH, Liu QS, Qin L, Li Y. Cell hydrophobicity is a triggering force of biogranulation. Enzym. Microb. Technol. 2004;34:371-379.   DOI
35 Aslim B, Onal D, Beyatli Y. Factors influencing autoaggregation and aggregation of lactobacillus delbrueckii subsp. bulgaricus isolated from handmade yogurt. J. Food Protect. 2007;70:223-227.   DOI
36 Sheng GP, Yu HQ, Li XY. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol. Adv. 2010;28:882-894.   DOI
37 Guo F, Zhang SH, Yu X, Wei B. Variations of both bacterial community and extracellular polymers: The inducements of increase of cell hydrophobicity from biofloc to aerobic granule sludge. Biores. Technol. 2011;102:6421-6428.   DOI
38 Muda K, Aris A, Salim MR, et al. Aggregation and surface hydrophobicity of selected microorganism due to the effect of substrate, pH and temperature. Int. Biodeter. Biodegrad. 2014;93:202-209.   DOI
39 Liu Y, Tay JH. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res. 2002;36:1653-1665.   DOI
40 Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S. Adhesion and aggregation ability of probiotic strain lactobacillus acidophilus M92. J. Appl. Microbiol. 2003;94:981-987.   DOI
41 Sutherland IW. Exopolysaccharides in biofilms, flocs and related structures. Water Sci. Technol. 2001;43:77-86.
42 Li H, Wen Y, Cao A, Huang J, Zhou Q, Somasundaran P. The influence of additives ($Ca^{2+}$, $Al^{3+}$, and $Fe^{3+}$) on the interaction energy and loosely bound extracellular polymeric substances (EPS) of Activated sludge and their flocculation mechanisms. Biores. Technol. 2012;114:188-194.   DOI
43 Tay JH, Tay STL, Liu Y, Show KY, Ivanov V. Biogranulation technologies for wastewater treatment: Microbial granules. 1st ed. Elsevier Science; 2006.
44 Di Iaconi C, Ramadori R, Lopez A, Passino R. Aerobic granular sludge systems: The new generation of wastewater treatment technologies. Ind. Eng. Chem. Res. 2007;46:6661-6665.   DOI
45 Adav SS, Lee DJ, Show KY, Tay JH. Aerobic granular sludge: Recent advances. Biotechnol. Adv. 2008a;26:411-423.   DOI
46 Liu XW, Sheng GP, Yu HQ. Physicochemical characteristics of microbial granules. Biotechnol. Adv. 2009;27:1061-1070.   DOI
47 Chen H, Zhou S, Li T. Impact of extracellular polymeric substances on the settlement ability of aerobic granular sludge. Environ. Technol. 2010;31:1601-1612.   DOI
48 Wang ZW, Liu Y, Tay JH. Distribution of EPS and cell surface hydrophobicity in aerobic granules. Appl. Microbiol. Biotechnol. 2005:69:469-473.   DOI
49 Wang Z, Liu L, Yao J, Cai W. Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors. Chemosphere 2006;63:1728-1735.   DOI
50 Zhang L, Feng X, Zhu N, Chen J. Role of extracellular protein in the formation and stability of aerobic granules. Enzym. Microb. Technol. 2007;41:551-557.   DOI
51 Seviour T, Zhiguo Y, Loosdrecht MCMV, Lin Y. Aerobic sludge granulation: A tale of two polysaccharides? Water Res. 2012;46:4803-4813.   DOI
52 Wang S, Shi W, Yu S, Yi X, Yang X. Formation of aerobic granules by $Mg^{2+}$ and $Al^{3+}$ augmentation in sequencing batch airlift reactor at low temperature. Bioproc. Biosys. Eng. 2012;35: 1049-1055.   DOI
53 Perez M, Romero LI, Sales D. Comparative performance of high rate anaerobic thermophilic technologies treating industrial wastewater. Water Res. 1998;32:559-564.   DOI
54 Adav SS, Lee DJ, Tay JH. Extracellular polymeric substances and structural stability of aerobic granule. Water Res. 2008b;42: 1644-1650.   DOI
55 Park C, Muller CD, Abu-Orf MM, Novak JT. The effect of wastewater cations on activated sludge characteristics: Effects of aluminium and iron in floc. Water Environ. Res. 2006;78:31-40.   DOI
56 Yu HQ, Fang HHP, Tay JH. Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminum chloride. Chemosphere 2001;44:31-36.   DOI
57 Zita A, Hermansson M. Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs. Appl. Environ. Microbiol. 1997;63:1168-1170.
58 Rahman MM, Kim WS, Kumura H, Shimazaki KI. Autoaggregation and surface hydrophobicity of Bifidobacteria. World J. Microb. Biotech. 2008;24:1593-1598.   DOI
59 Liu L, Gao DW, Zhang M, Fu Y. Comparison of $Ca^{2+}$ and $Mg^{2+}$ enhancing aerobic granulation in SBR. J. Hazard. Mater. 2010;181:382-387.   DOI
60 Chen F. Bacterial auto-aggregation and co-aggregation in activated sludge [thesis]. Clemson University, USA; 2007.