• Title/Summary/Keyword: microbial production

Search Result 1,749, Processing Time 0.024 seconds

Feeding Value of Ammoniated Rice Straw Supplemented with Rice Bran in Sheep : I. Effects on Digestibility, Nitrogen Retention and Microbial Protein Yield

  • Orden, E.A.;Yamaki, K.;Ichinohe, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.4
    • /
    • pp.490-496
    • /
    • 2000
  • In vivo digestibility, nitrogen retention and microbial protein yield from diets of 100% ammonia treated rice straw (ARS) ($D_1$); 65% untreated rice straw (URS)+30% rice bran (RB)+5% SBM ($D_2$) and 85% ARS+15% RB ($D_3$) were determined using three Japanese Corriedale wethers in a $3{\times}3$ Latin Square Design. Results showed that DM consumption and organic matter digestibility were highest in $D_3$; but did not promote high protein digestibility, which RB+SBM had effected in URS based-diet. Dry matter intake and OM digestibility were the same for $D_1$ and $D_3$. Solubility of fiber bonds was increased by ammoniation, resulting in higher NDF digestibility. Nitrogen retention and microbial protein yield of rice bran supplemented groups was higher than ARS, but supplementation did not significantly increase efficiency of microbial protein synthesis from ARS which did occur when RB+SBM was added to untreated straw. The quality of ammoniated rice straw could be improved through RB supplementation because of its positive effects on DM digestibility, nitrogen retention and microbial protein yield. However, the addition of RB+SBM to URS resulted to more efficient N utilization.

A REVIEW OF THE MICROBIAL DIGESTION OF FEED PARTICLES IN THE RUMEN

  • McAllister, T.A.;Bae, H.D.;Yanke, L.J.;Cheng, K.J.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.303-316
    • /
    • 1994
  • Microbial digestion of feed in the rumen involves a sequential attack culminating in the formation of fermentation products and microbial cells that can be utilized by the host animal. Most feeds are protected by a cuticular layer which is in effect a microbial barrier that must be penetrated or circumvented for digestion to proceed. Microorganisms gain access to digestible inner plant tissues through damage to the cuticle, or via natural cell openings (e.g., stomata) and commence digestion from within the feed particles. Primary colonizing bacteria adhere to specific substrates, divide to form sister cells and the resultant microcolonies release soluble substrates which attract additional microorganisms to the digestion site. These newly attracted microorganisms associate with primary colonizers to form complex multi-species consortia. Within the consortia, microorganisms combine their metabolic activities to produce the diversity of enzymes required to digest complex substrates (e.g., cellulose, starch, protein) which comprise plant tissues. Feed characteristics that inhibit the microbial processes of penetration, colonization and consortia formation can have a profound effect on the rate and extent of feed digestion in the rumen. Strategies such as feed processing or plant breeding which are aimed at manipulating feed digestion must be based on an understanding of these basic microbial processes and their concerted roles in feed digestion in the rumen.

Discovery of D-Stereospecific Dipeptidase from Thermophilic Bacillus sp. BCS-l and Its Application for Synthesis of D-Amino Acid-Containing Peptide

  • Baek, Dae-Heoun;Kwon, Seok-Joon;Park, Jin-Seo;Lee, Seung-Goo;Mheen, Tae-Ick;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.646-649
    • /
    • 1999
  • A thermophilic bacterium producing D-stereospecific dipeptidase was isolated from Korean soil samples. The enzyme hydrolyzed the peptide bond between D-alanyl-D-alanine (D-Ala-D-Ala). The isolated bacterial strain was rod shaped, gram-positive, motile, and formed an endospore. Morphological and physiological characteristics suggested this microorganism a thermophilic Bacillus species, and was named as Bacillus sp. BCS-l. The production of D-stereospecific dipeptidase was growth-associated and optimal at $55^{\circ}C$. The enzyme was applied for the synthesis of D-amino acid-containing peptide, N-benzyloxycarbonyl-L-aspartyl-D-alanine benzyl ester (Z-L-Asp-D-AlaOBzl), as a model reaction. A thermodynamically controlled synthesis of Z-L-Asp-D-AlaOBzl was achieved in an organic solvent.

  • PDF

Genome Snapshot of Paenibacillus polymyxa ATCC $842^T$

  • Jeong, Hae-Young;Kim, Ji-Hyun;Park, Yon-Kyoung;Kim, Seong-Bin;Kim, Chang-Hoon;Park, Seung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1650-1655
    • /
    • 2006
  • Bacteria belonging to the genus Paenibacillus are facultatively anaerobic endospore formers and are attracting growing ecological and agricultural interest, yet their genome information is very limited. The present study surveyed the genomic features of P. polymyxa ATCC $842^T$ using pulse-field gel electrophoresis of restriction fragments and sample genome sequencing of 1,747 reads (approximately 17.5% coverage of the genome). Putative functions were assigned to more than 60% of the sequences. Functional classification of the sequences showed a similar pattern to that of B. subtilis. Sequence analysis suggests nitrogen fixation and antibiotic production by P. polymyxa ATCC $842^T$, which may explain its plant growth-promoting effects.

Effect of inclusion of different levels of Leucaena silage on rumen microbial population and microbial protein synthesis in dairy steers fed on rice straw

  • Nguyen, Thien Truong Giang;Wanapat, Metha;Phesatcha, Kampanat;Kang, Sungchhang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.181-186
    • /
    • 2017
  • Objective: Leucaena leucocephala (Leucaena) is a perennial tropical legume that can be directly grazed or harvested and offered to ruminants as hay, silage, or fresh. However, Leucaena contain phenolic compounds, which are considered anti-nutritional factors as these may reduce intake, digestibility and thus animal performance. Therefore, the objective of this experiment was to determine effects of Leucaena silage (LS) feeding levels on rumen microbial populations, N-balance and microbial protein synthesis in dairy steers. Methods: Four, rumen fistulated dairy steers with initial weight of $167{\pm}12kg$ were randomly assigned to receive dietary treatments according to a $4{\times}4$ Latin square design. Treatments were as followings: T1 = untreated rice straw (RS; Control), T2 = 70% RS+30% LS, T3 = 40% RS+60% LS, and T4 = 100% LS. Dairy steers were fed rice straw and LS ad libitum and supplemented with concentrate at 0.2% of body weight/d. Results: Results revealed that the rumen microbial population, especially cellulolytic, proteolytic bacteria and fungal zoospores were enhanced in steers that received 60% of LS (p<0.05), whereas the amylolytic bacteria population was not affected by treatments (p>0.05). Protozoal population was linearly decreased with increasing level of LS (p<0.05). Moreover, N-balance and microbial protein synthesis were enhanced by LS feeding (p<0.05) and were the highest in 60% LS group. Conclusion: Based on this study, it could be concluded that replacement of RS with 60% LS significantly improved microbial population and microbial protein synthesis in diary steers.

Quality Dependence on Sanitization method of Dotori-muk muchim in Foodservice Operations(II) (단체급식소에서 이용되는 도토리묵 무침의 전처리 시 소독방법에 따른 품질 연구(II))

  • Kim, Heh-Young;Ko, Sung-Hee
    • Korean journal of food and cookery science
    • /
    • v.21 no.5
    • /
    • pp.557-566
    • /
    • 2005
  • The purpose of this study was to estimate the microbial quality of some raw vegetables and to suggest a safer method of sanitization and pre-preparation in foodservice operations. The production of Dotori-muk muchim was monitored from ingredient preparation to final product and during holding at different temperatures. Three sanitization methods were performed during the preparation with crown daisy (tap water, chlorine water, electrolyzed water). The largest reduction of microbial counts was for electrolyzed water (after treatment, total plate counts were decreased to $2.76{\sim}3.76$ Log CFU/g, coliform counts were not detected). In the case before immersed in chlorine water, Performed first washing is larger the effective reduction of microbial counts than or not.

Microbial Metabolism of Yangonin, a Styryl Lactone from Piper methysticum (Kava)

  • Kim, Ji-Hye;Kim, Hyun-Jung;Lee, Ik-Soo
    • Natural Product Sciences
    • /
    • v.16 no.3
    • /
    • pp.148-152
    • /
    • 2010
  • Microbial metabolism studies of yangonin (1), a major styryl lactone from Piper methysticum, have resulted in the production of three hydroxylated metabolites (2-4). The chemical structures of these compounds were elucidated to be 4-methoxy-6-(12-hydroxystyryl)-2-pyrone (2),4-methoxy-6-(11,12-dihydroxystyryl)-2-pyrone (3),and 4,12-dimethoxy-6-(7,8-dihydroxy-7,8-dihydrostyryl)-2-pyrone (4) on the basis of the chemical and spectroscopic analyses. The compounds 3 and 4 are reported herein as microbial metabolites of yangonin for the first time.

Basic Study for Harvesting Unused Energy based on Plant-Microbial Electrochemical Technology (식물-미생물전기화학 기반의 미활용 에너지 회수 기초 연구)

  • Yu, Jaecheul;Shin, Choon Hwan
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.219-224
    • /
    • 2019
  • In this study, we evaluated the energy production from plant-microbial fuel cells using representative indoor plants, such as Scindapsus aureus and Clatha minor. The maximum power density of microbial fuel cell (MFC) using S. aureus ($3.36mW/m^2$) was about 2 times higher than that of the MFC using C. minor ($1.43mW/m^2$). It was confirmed that energy recovery is possible using plant-MFCs without fuel. However, further research is needed to improve the performance of plant-MFCs. Nevertheless, plant-MFCs have proved their potential as a novel energy source to overcome the limitations of the conventional renewable energy sources such as wind power and solar cells, and could be employed to a power source for the sensor in charge of the fourth industrial revolution.

Stereoselective Microbial Hydroxylation of Progestin, Norethisterone by Using Aspergillus niger and Penicillium citrinum

  • Azizuddin, Azizuddin;Iqbal, Muhammad;Musharraf, Syed Ghulam;Shahzad, Saleem
    • Natural Product Sciences
    • /
    • v.26 no.4
    • /
    • pp.283-288
    • /
    • 2020
  • Microbial transformation of a potent progestin, norethisterone (17��-hydroxy-19-nor-17α-pregn-4-en-20-yn-3-one) (1) was carried out by using two filamentous fungi Aspergillus niger and Penicillium citrinum. Biotransformation of 1 with A. niger yielded a hydroxylated transformed product 10��,17��-diydroxy-19-nor-17α-pregn-4-en-20-yn-3-one (2) whereas 11��,17��-diydroxy-19-nor-17α-pregn-4-en-20-yn-3-one (3) was obtained through microbial transformation of 1 by P. citrinum. It is the first report of their production from 1 by using A. niger and P. citrinum with complete 1H- and 13C-NMR assignment. The structures of both metabolites were characterized by various spectroscopic techniques and reported data.

Preparation of Microbial Media based on Hardwood Fallen Leaves

  • Yongtae Yu;Hyunjun Ko
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.2
    • /
    • pp.118-122
    • /
    • 2024
  • This study reported the novel use of fallen leaf extract as a microbial culture media for the first time. Extract from hardwood fallen leaves (HLE) was prepared under high temperature and pressure conditions and then supplemented with specific nutrients. The growth of four industrially significant prokaryotes on the HLE-based media was measured and compared with that on enriched media (Luria-Bertani, LB). Notably, supplementing HLE with only 0.5 g of yeast extract and 1 g tryptone per liter showed a similar growth rate of Pseudomonas chlororaphis compared to standard LB media. Overall, the HLE media developed in this study offers a sustainable and cost-effective approach to microbial media production, capitalizing on the valorization of forest waste.