• Title/Summary/Keyword: microbial process

Search Result 806, Processing Time 0.024 seconds

Microbiological Quality Evaluation for Implementation of a HACCP System in Day-Care Center Foodservice Operations I. Focus on Heating Process and After-Heating Process (보육시설급식소의 HACCP시스템 적용을 위한 미생물적 품질평가 I. 가열조리 및 가열조리후 처리 공정을 중심으로)

  • 민지혜;이연경
    • Journal of Nutrition and Health
    • /
    • v.37 no.8
    • /
    • pp.712-721
    • /
    • 2004
  • The objective of this study was to evaluate the microbiological quality of heating and after-heating processed foods for implementation of a HACCP system in day-care center foodservice operations. The evaluating points were microbial assessment and temperature of foods during receiving, cooking, and serving in heating process. In non-heating process, in addition to monitoring microbial assessment of food during preparation, cooking, and serving steps, the microbial populations of employees' hands and utensils and serving temperature were also evaluated. Microbiological quality was assessed using 3M Petrifilm$^{TM}$ to measure total plate count and coliforms for foods and utensils and Staphylococcus aureus for hands in five Gumi day-care centers. Microbiological quality assessment for foods and utensils is summarized as follows. Microbiological quality of the heating processed foods was satisfactory for cooking and serving steps. The internal temperature of food was above 74$^{\circ}C$. However, temperature control before the serving step was not achieved due to inappropriate time management between the cooking and serving steps. In the after-heating process, the total plate counts of boiled mungbean sprouts salad, blanched spinach salad, com vegetable salad were below the standard at the serving step. The majority of samples showed that coliforms exceeded the norm, which is thought to be the result of the cross-contamination from utensils. These results suggest that it is essential to educate employees on the importance of hand washing and of avoiding cross-contamination by using clean, sanitized equipment to serve food in the after-heating process. Establishing Sanitation Standard Operating Procedures (SSOPs) is an essential part of any HACCP system in day-care center foodservice operations.

Microbial Risk Assessment (미생물학적 위해성 평가)

  • 이건형
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.101-108
    • /
    • 2001
  • Risk assessment defines as the process of estimating both the probability that an event will occur and the probable magnitude of its adverse effects. Chemical or microbial risk assessment generally follows four basic steps, that is, hazard identification, exposure assessment, dose-response assessment, and risk characterization. Risk assessment provides an effective framework for determining the relative urgency of problems and the allocation of resources to reduce risks. Using the results of risk analyses, we can target prevention, reme-diation, or control effects towards areas, sources, or situations in which the greatest risk reductions can be achieved with resources available. Risk assessment is also used to explain chemical and microbial risks as well as ecosystem impacts. Moreover, this process, which allows the quantitation and comparison of diverse risks, lets risk managers utilize the maximum amount of complex information in the decision-making process. This information can also be used to weigh the cost and benefits of control options and to develop standards or treatment options.

  • PDF

Optimization Studies for the Production of Microbial Transglutaminase from a Newly Isolated Strain of Streptomyces sp.

  • Macedo, Juliana Alves;Sette, Lara Duraes;Sato, Helia Harumi
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.904-911
    • /
    • 2008
  • Covalent cross-links between a number of proteins and peptides explain why transglutaminase may be widely used by food processing industries. The objective of this work was optimization of the fermentation process to produce transglutaminase from a new microbial source, the Streptomyces sp. P20. The strategy adopted to modify the usual literature media was: (1) fractional factorial design (FFD) to elucidate the key medium ingredients, (2) central composite design (CCD) to optimise the concentration of the key components. Optimization of the medium resulted in not only an 86% increase in microbial transglutaminase activity as compared to the media cited in the literature, but also a reduction in the production cost. Optimal fermentation conditions - namely temperature and agitation rate - were also studied, using CCD methodology. Usual conditions of $30^{\circ}C$ and 100 rpm were within the optimal area. All other parameters for enzyme production were experimentally proven to be optimum fermentation conditions.

A Study on the pH Characterization for Microbial Fermentation in Tomato Juice (토마토 주스의 미생물 발효 산도 특성에 관한 연구)

  • Choi, S.M.;Supeno, D.;A., Okka;Chung, S.W.;Kim, H.S.;Kim, J.S.;Park, J.M.;Kwon, S.H.;Kwon, S.K.;Choi, Won Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.170-177
    • /
    • 2014
  • This study was conducted to know the behavior of pH behavior in the tomato juices to find out an effective medium for microbial cultivation. Bacterial culture media is a material consist a mixture of nutrients used to grow microorganisms on or in it. In addition, microbial culture media can also be used for isolation, propagation, testing the nature physiological, and calculation of the number of microorganisms. Fresh tomato juice is used for basic ingredient, therein added salt, sugar and EM (Effective Microbial). The fermented solution placed in a room with a temperature of 40oC. Data retrieval before the pH value reached a constant value is done every 12 hours, after constant rate data collection was done every 24 hours. The pH value has been steady after 372 hours of fermentation process (15.5 days). From the results obtained that the amount of additional ingredient which added into tomato juice does not affect final pH value of solution. Thereby the most effective treatment for microbial cultivation media is treatment number four.

The Pragmatic Introduction and Expression of Microbial Transgenes in Plants

  • Ali, Sajid;Park, Soon-Ki;Kim, Won-Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.1955-1970
    • /
    • 2018
  • Several genetic strategies have been proposed for the successful transformation and expression of microbial transgenes in model and crop plants. Here, we bring into focus the prominent applications of microbial transgenes in plants for the development of disease resistance; mitigation of stress conditions; augmentation of food quality; and use of plants as "bioreactors" for the production of recombinant proteins, industrially important enzymes, vaccines, antimicrobial compounds, and other valuable secondary metabolites. We discuss the applicable and cost-effective approaches of transgenesis in different plants, as well as the limitations thereof. We subsequently present the contemporary developments in targeted genome editing systems that have facilitated the process of genetic modification and manifested stable and consumer-friendly, genetically modified plants and their products. Finally, this article presents the different approaches and demonstrates the introduction and expression of microbial transgenes for the improvement of plant resistance to pathogens and abiotic stress conditions and the production of valuable compounds, together with the promising research progress in targeted genome editing technology. We include a special discussion on the highly efficient CRISPR-Cas system helpful in microbial transgene editing in plants.

Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages

  • Ning, Tingting;Wang, Huili;Zheng, Mingli;Niu, Dongze;Zuo, Sasa;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.171-180
    • /
    • 2017
  • Objective: This study investigated the association of enzyme-producing microbes and their enzymes with starch and hemicellulose degradation during fermentation of total mixed ration (TMR) silage. Methods: The TMRs were prepared with soybean curd residue, alfalfa hay (ATMR) or Leymus chinensis hay (LTMR), corn meal, soybean meal, vitamin-mineral supplements, and salt at a ratio of 25:40:30:4:0.5:0.5 on a dry matter basis. Laboratory-scale bag silos were randomly opened after 1, 3, 7, 14, 28, and 56 days of ensiling and subjected to analyses of fermentation quality, carbohydrates loss, microbial amylase and hemicellulase activities, succession of dominant amylolytic or hemicellulolytic microbes, and their microbial and enzymatic properties. Results: Both ATMR and LTMR silages were well preserved, with low pH and high lactic acid concentrations. In addition to the substantial loss of water soluble carbohydrates, loss of starch and hemicellulose was also observed in both TMR silages with prolonged ensiling. The microbial amylase activity remained detectable throughout the ensiling in both TMR silages, whereas the microbial hemicellulase activity progressively decreased until it was inactive at day 14 post-ensiling in both TMR silages. During the early stage of fermentation, the main amylase-producing microbes were Bacillus amyloliquefaciens (B. amyloliquefaciens), B. cereus, B. licheniformis, and B. subtilis in ATMR silage and B. flexus, B. licheniformis, and Paenibacillus xylanexedens (P. xylanexedens) in LTMR silage, whereas Enterococcus faecium was closely associated with starch hydrolysis at the later stage of fermentation in both TMR silages. B. amyloliquefaciens, B. licheniformis, and B. subtilis and B. licheniformis, B. pumilus, and P. xylanexedens were the main source of microbial hemicellulase during the early stage of fermentation in ATMR and LTMR silages, respectively. Conclusion: The microbial amylase contributes to starch hydrolysis during the ensiling process in both TMR silages, whereas the microbial hemicellulase participates in the hemicellulose degradation only at the early stage of ensiling.

Effects of Chemical Compounds on Vase Life and Microbial Growth of Cut Calla Flowers

  • Lee, Seon-Ha;Kim, Jung-Ho
    • Plant Resources
    • /
    • v.3 no.1
    • /
    • pp.59-65
    • /
    • 2000
  • The opening process of cut calla flower was faster at 30 t than at lower temperatures as it could be expected from its tropical origin. Gibberellin enhanced the flower opening, however, it also speeded up senescent. Silver thiosulfate was effective in prolonging the vase life of the cut calla flower. Silver thiosulfate reduced ethylene generation by the flower and inhibited microbial growth in the flower stalk. Reduction in ethylene generation and inhibition of microbial growth is thought to be responsible for the extension of the vase life of cut calla flowers by silver thiosulfate.

  • PDF

Electricity Generation in Cellulose-Fed Microbial Fuel Cell Using Thermophilic Bacterium, Bacillus sp. WK21

  • Kaoplod, Watcharasorn;Chaijak, Pimprapa
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.122-125
    • /
    • 2022
  • The cellulose-fed microbial fuel cell (MFC) is a biotechnological process that directly converts lignocellulosic materials to electricity without combustion. In this study, the cellulose-fed, MFC-integrated thermophilic bacterium, Bacillus sp. WK21, with endoglucanase and exoglucanase activities of 1.25 ± 0.08 U/ml and 0.95 ± 0.02 U/ml, respectively, was used to generate electricity at high temperatures. Maximal current densities of 485, 420, and 472 mA/m2 were achieved when carboxymethyl cellulose, avicel cellulose, and cellulose powder, respectively, were used as substrates. Their respective maximal power was 94.09, 70.56, and 89.30 mW/m3. This study demonstrates the value of the novel use of a cellulase-producing thermophilic bacterium as a biocatalyst for electricity generation in a cellulose-fed MFC.

Analysis of Microbial Community Change in Ganjang According to the Size of Meju (메주의 크기에 따른 간장의 미생물 군집 변화 양상 분석)

  • Ho Jin Jeong;Gwangsu Ha;Ranhee Lee;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.453-464
    • /
    • 2024
  • The fermentation of ganjang is known to be greatly influenced by the microbial communities derived from its primary ingredients, meju and sea salt. This study investigated the effects of changes in meju size on the distribution and correlation of microbial communities in ganjang fermentation, to enhance its fermentation process. Ganjang was prepared using whole meju and meju divided into thirds, and samples were collected at 7-day intervals over a period of 28 days for microbial community analysis based on 16S rRNA gene sequencing. At the genus level, during fermentation, ganjang made with whole meju exhibited a dominance of Chromohalobacter (day 7), Pediococcus (day 14), Bacillus (day 21), and Pediococcus (day 28), whereas ganjang made with meju divided into thirds consistently showed a Pediococcus predominance over the 28 days. Beta-diversity analysis of microbial communities in ganjang with different meju sizes revealed significant separation of microbial communities at fermentation days 7 and 14 but not at days 21 and 28 across all experimental groups. The linear discriminant analysis effect size (LEfSe) was determined to identify biomarkers contributing to microbial community differences at days 7 and 14, showing that on day 7, potentially halophilic microbes such as Gammaproteobacteria, Firmicutes, Oceanospirillales, Halomonadaceae, Bacilli, and Chromohalobacter were prominent, whereas on day 14, lactic acid bacteria such as Pediococcus acidilactici, Lactobacillaceae, Pediococcus, Bacilli, Leuconostocaceae, and Weissella were predominant. Furthermore, correlation analysis of microbial communities at the genus and species levels revealed differences in correlation patterns between meju sizes, suggesting that meju size may influence microbial interactions within ganjang.

간장 효모에 대하여

  • 이한창
    • Korean Journal of Microbiology
    • /
    • v.1 no.1
    • /
    • pp.48-50
    • /
    • 1963
  • The authors have investigated about the microbial contamination of goods which is a criterion of hygienic control. Conducting on investigation, a special attention has been paid on the rate of microbial contamination in the goods, especially in manufacturing process of the softdrink. The authors also made an experiment on total microbes which is the criterion of contamination in each step of the process and in raw materials together with materials to be used for subdividing. Results obtained were as follows : 1) The orgin of microbial contamination was found in bottle cap and in tap water, that is, there appeared 9 colony per ml in bottle cap and 31-74 colony per ml in tap water, respectively. 2) It was found that microbial contamination are 4 colony per ml in average through year. However, it appeared 1 colony per ml in winter and 8 colony per ml in summer. 3) Coliform groups are not detected in goods through a year. 4) There was no variation in number of total microbes after ion exchange resin passage in purification process of tap water. 5) The number of microbes in goods are decreased when the raw materials are treated in high temperature short time (HTST) sterilization.

  • PDF