• Title/Summary/Keyword: microbial physiology

Search Result 113, Processing Time 0.03 seconds

Applications of Metabolic Modeling to Drive Bioprocess Development for the Production of Value-added Chemicals

  • Mahadevan, Radhakrishnan;Burgard, Anthony P.;Famili, Iman;Dien, Steve Van;Schilling, Christophe H.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.408-417
    • /
    • 2005
  • Increasing numbers of value added chemicals are being produced using microbial fermentation strategies. Computational modeling and simulation of microbial metabolism is rapidly becoming an enabling technology that is driving a new paradigm to accelerate the bioprocess development cycle. In particular, constraint-based modeling and the development of genome-scale models of industrial microbes are finding increasing utility across many phases of the bioprocess development workflow. Herein, we review and discuss the requirements and trends in the industrial application of this technology as we build toward integrated computational/experimental platforms for bioprocess engineering. Specifically we cover the following topics: (1) genome-scale models as genetically and biochemically consistent representations of metabolic networks; (2) the ability of these models to predict, assess, and interpret metabolic physiology and flux states of metabolism; (3) the model-guided integrative analysis of high throughput 'omics' data; (4) the reconciliation and analysis of on- and off-line fermentation data as well as flux tracing data; (5) model-aided strain design strategies and the integration of calculated biotransformation routes; and (6) control and optimization of the fermentation processes. Collectively, constraint-based modeling strategies are impacting the iterative characterization of metabolic flux states throughout the bioprocess development cycle, while also driving metabolic engineering strategies and fermentation optimization.

Effects of Microbial Additives and Silo Density on Chemical Compositions, Fermentation Indices, and Aerobic Stability of Whole Crop Rice Silage (미생물 첨가와 사일로 밀도가 총체벼 사일리지의 영양소 함량, 발효특성 및 호기적 안전성에 미치는 영향)

  • Joo, Young Ho;Jeong, Seung Min;Seo, Myeong Ji;Lee, Seong Shin;Choi, Ki Choon;Kim, Sam Churl
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.2
    • /
    • pp.96-102
    • /
    • 2022
  • The present study investigated effects of microbial additives and silo density on chemical compositions, fermentation indices, and aerobic stability of whole crop rice (WCR) silage. The WCR ("Youngwoo") was harvested at 49.7% dry matter (DM), and ensiled into 500 kg bale silo with two different compaction pressures at 430 kgf (kilogram-force)/cm2 (LOW) and 760 kgf/cm2 (HIGH) densities. All WCR forage were applied distilled water (CON) or mixed inoculants (Lactobacillus brevis 5M2 and Lactobacillus buchneri 6M1) with 1:1 ratio at 1x105 colony forming unit/g (INO). The concentrations of DM, crude protein, ether extract, crude ash, neutral detergent fiber, and acid detergent fiber of whole crop rice before ensiling were 49.7, 9.59, 2.85, 6.74, 39.7, and 21.9%, respectively. Microbial additives and silo density did not affect the chemical compositions of WCR silage (p>0.05). The INO silages had lower lactate (p<0.001), but higher propionate (p<0.001). The LOW silages had higher lactate (p=0.004). The INO silages had higher yeast count (p<0.001) and aerobic stability (p<0.001). However, microbial counts and aerobic stability were not affected by silo density. Therefore, this study concluded that fermentation quality of WCR silage improved by microbial additives, but no effects by silo density.

Antifungal and carboxylesterase-producing bacteria applied into corn silage still affected the fermented total mixed ration

  • Dimas Hand Vidya Paradhipta;Myeong Ji Seo;Seung Min Jeong;Young Ho Joo;Seong Shin Lee;Pil Nam Seong;Hyuk Jun Lee;Sam Churl Kim
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.720-730
    • /
    • 2023
  • Objective: This study investigated the effects of corn silage as a source of microbial inoculant containing antifungal and carboxylesterase-producing bacteria on fermentation, aerobic stability, and nutrient digestibility of fermented total mixed ration (FTMR) with different energy levels. Methods: Corn silage was used as a bacterial source by ensiling for 72 d with an inoculant mixture of Lactobacillus brevis 5M2 and L. buchneri 6M1 at a 1:1 ratio. The corn silage without or with inoculant (CON vs MIX) was mixed with the other ingredients to formulate for low and high energy diets (LOW vs HIGH) for Hanwoo steers. All diets were ensiled into 20 L mini silo (5 kg) for 40 d in quadruplicate. Results: The MIX diets had lower (p<0.05) acid detergent fiber with higher (p<0.05) in vitro digestibilities of dry matter and neutral detergent fiber compared to the CON diets. In terms of fermentation characteristics, the MIX diets had higher (p<0.05) acetate than the CON diets. The MIX diets had extended (p<0.05) lactic acid bacteria growth at 4 to 7 d of aerobic exposure and showed lower (p<0.05) yeast growth at 7 d of aerobic exposure than the CON diets. In terms of rumen fermentation, the MIX diets had higher (p<0.05) total fermentable fraction and total volatile fatty acid, with lower (p<0.05) pH than those of CON diets. The interaction (p = 0.036) between inoculant and diet level was only found in the immediately fermentable fraction, which inoculant was only effective on LOW diets. Conclusion: Application of corn silage with inoculant on FTMR presented an antifungal effect by inhibiting yeast at aerobic exposure and a carboxylesterase effect by improving nutrient digestibility. It also indicated that fermented feedstuffs could be used as microbial source for FTMR. Generally, the interaction between inoculant and diet level had less effect on this FTMR study.

THE EFFECT OF RICE STRAW-POULTRY MANURE SILAGE AND BARLEY ON THE NITROGEN DIGESTION AND MICROBIAL PROTEIN SYNTHESIS IN THE RUMEN OF SHEEP

  • Lee, Nam-Hyung;Yoon, Chil-Surk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.2 no.4
    • /
    • pp.615-623
    • /
    • 1989
  • Three sheep fitted with rumen cannulae and abomasal cannulae were given daily 750 g (DM) of three diets consisting of straw-manure silage and barley mixture in the ratios of 75:25, 50:50 and 25:75. As the proportion of barley in the diet increased, there was an increase in the amount of OM apparently digested in the rumen and thole tract (P<.01). But ADF digestion was decreased. For the 25:75 diet the $NH_3-N$ content in the rumen showed the highest value, but the total VFA was the lowest. The rumen volume and dilution rate increased with increasing ratio of silage in diets. There were no significant differences between diets in abomasal NAN flow, and the bacterial-N for the 25:75 diet was 7.3 g N as compared with 9.2-9.6 g N for the other diets (P<.01). Rates of bacterial nitrogen synthesis in the rumen were 30.5, 24.1 and 14.9 g N per Kg OM apparently digested in the rumen for the 75:25, 50:50 and 25:75 diets, respectively.

Physiology of Small and Large Intestine of Swine - Review -

  • Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.608-619
    • /
    • 1998
  • The small and the large intestine of swine represent the organs that extract nutrients from feedstuffs through digestion and fermentation and that allow their absorption and incorporation into the blood circulation. Special attention is directed towards the small intestine of young pigs since the transition to a solid diet at weaning exerts major impacts on the structural and functional integrity of the small intestine. Dietary factors involved in postweaning changes of gut morphology and biochemistry such as removal of bioactive compounds in sows milk at weaning, anti-nutritional factors in weaner diets, dietary fiber and the role of voluntary feed intake will be elucidated. The microbial function of the large intestine which is carried out by a diverse population of microorganisms is dependent on substrate availability. Short chain fatty acids as main fermentation products contribute to the energy supply of the host but they are also important for the maintenance of the morphological and functional integrity of the epithelium in the colon. As a result of bacterial nitrogen assimilation in the large intestine, nitrogen is shifted from the urinary to the fecal excretion route thus saving metabolic energy to the pig because less ammonia would become available for conversion to urea.

Screening from the Genome Databases: Novel Epoxide Hydrolase from Caulobacter crescentus

  • HWANG SEUNGHA;HYUN HYEJIN;LEE BYOUNGJU;PARK YOUNGSEUB;CHOI CHAYONG;HAN JIN;JOO HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.32-36
    • /
    • 2006
  • The genome sequences from several microbes have led to the discovery of numerous open reading frames of unknown functionality. The putative bacterial epoxide hydrolase (EH) genes selected from the genome databases were examined for their activities toward various epoxides. Among the nine open reading frames (ORFs) from four microbial species, the ORF from Caulobacter crescentus showed an epoxide hydrolase activity. The kinetic resolution, using C. crescentus EH (CCEH) of the aryl epoxides such as styrene oxide, could be performed more efficiently than short aliphatic epoxides. The resolution of racemic indene oxide, which could previously be resolved only by fungal epoxide hydrolases, was effectively accomplished by CCEH.

EFFECTS OF BLOOD-MIXED AND HEAT TREATMENT OF PROTEIN FEEDS ON NITROGEN DIGESTION IN THE RUMEN AND HINDGUT OF SHEEP

  • Yoon, C.S.;Lee, N.H.;Jung, K.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.1
    • /
    • pp.39-46
    • /
    • 1990
  • This experiment was conducted to study the effects of blood-mixed and heat-treated protein feeds on protein degradation in the rumen, flow of protein to the abomasums and availability of undegraded protein in the intestine of sheep in a $4{\times}4$ Latin square design. Soybean oil meal, rapeseed meal, and whole soybean were mixed with fresh swine blood and dried at $140^{\circ}C$ for 2 h. Proportionate disappearance of apparently digested OM in the postrumen for the blood and heat treated protein group was ranged from 43.2 to 50.5% as compared with 28.0% for the unheated soybean oil meal diet. The treated protein supplements were resulted in greater total N and NAN flow passing at the abomasums than untreated soybean oil meal diet was fed. The quantities of undegraded feed N passing at the abomasums for the treated protein diets was approximately twice as high as that of the untreated soybean oil meal diet and the estimated amount of undegraded N of the protein supplement itself was 79.1 to 84.2% as compared with 15% of soybean oil meal.

Optimized Methods for the Isolation of Arabidopsis Female Central Cells and Their Nuclei

  • Park, Kyunghyuk;Frost, Jennifer M.;Adair, Adam James;Kim, Dong Min;Yun, Hyein;Brooks, Janie S.;Fischer, Robert L.;Choi, Yeonhee
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.768-775
    • /
    • 2016
  • The Arabidopsis female gametophyte contains seven cells with eight haploid nuclei buried within layers of sporophytic tissue. Following double fertilization, the egg and central cells of the gametophyte develop into the embryo and endosperm of the seed, respectively. The epigenetic status of the central cell has long presented an enigma due both to its inaccessibility, and the fascinating epigenome of the endosperm, thought to have been inherited from the central cell following activity of the DEMETER demethylase enzyme, prior to fertilization. Here, we present for the first time, a method to isolate pure populations of Arabidopsis central cell nuclei. Utilizing a protocol designed to isolate leaf mesophyll protoplasts, we systematically optimized each step in order to efficiently separate central cells from the female gametophyte. We use initial manual pistil dissection followed by the derivation of central cell protoplasts, during which process the central cell emerges from the micropylar pole of the embryo sac. Then, we use a modified version of the Isolation of Nuclei TAgged in specific Cell Types (INTACT) protocol to purify central cell nuclei, resulting in a purity of 75-90% and a yield sufficient to undertake downstream molecular analyses. We find that the process is highly dependent on the health of the original plant tissue used, and the efficiency of protoplasting solution infiltration into the gametophyte. By isolating pure central cell populations, we have enabled elucidation of the physiology of this rare cell type, which in the future will provide novel insights into Arabidopsis reproduction.

Aging effects on the diurnal patterns of gut microbial composition in male and female mice

  • Kim, Hyun-Jung;Moon, Chang Mo;Kang, Jihee Lee;Park, Eun-Mi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.575-583
    • /
    • 2021
  • Composition of the gut microbiota changes with aging and plays an important role in age-associated disease such as metabolic syndrome, cancer, and neurodegeneration. The gut microbiota composition oscillates through the day, and the disruption of their diurnal rhythm results in gut dysbiosis leading to metabolic and immune dysfunctions. It is well documented that circadian rhythm changes with age in several biological functions such as sleep, body temperature, and hormone secretion. However, it is not defined whether the diurnal pattern of gut microbial composition is affected by aging. To evaluate aging effects on the diurnal pattern of the gut microbiome, we evaluated the taxa profiles of cecal contents obtained from young and aged mice of both sexes at daytime and nighttime points by 16S rRNA gene sequencing. At the phylum level, the ratio of Firmicutes to Bacteroidetes and the relative abundances of Verrucomicrobia and Cyanobacteria were increased in aged male mice at night compared with that of young male mice. Meanwhile, the relative abundances of Sutterellaceae, Alloprevotella, Lachnospiraceae UCG-001, and Parasutterella increased in aged female mice at night compared with that of young female mice. The Lachnospiraceae NK4A136 group relative abundance increased in aged mice of both sexes but at opposite time points. These results showed the changes in diurnal patterns of gut microbial composition with aging, which varied depending on the sex of the host. We suggest that disturbed diurnal patterns of the gut microbiome can be a factor for the underlying mechanism of age-associated gut dysbiosis.

Immunostimulatory Effects of Blueberry Yeast Fermented Powder Against Cyclophosphamide-induced Immunosuppressed Model (Cyclophosphamide에 의한 면역저하 동물모델에서 블루베리 효모 발효 분말의 면역증강 효과)

  • Jeong, Do Youn;Yang, Hee Jong;Jeong, Su Ji;Kim, Min Guk;Yun, Chi Young;Lee, Hak Yong;Lee, Yang Hee;Shin, Dong Yeop;Yang, Yea gin;Lee, Hae Seong;Park, Young Mi
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.1
    • /
    • pp.48-55
    • /
    • 2019
  • Current studies have been reported that fruits such as berries may contain both antioxidant and antitumor polyphenols that may be important in this regard. We investigated the immunostimulatory effect of fermented blueberry (Vaccinium corymbosum L.) on cyclophosphamide-induced immunosuppression in animal model. Rats were administered blueberry yeast fermented powder (BYFP) at doses 30, 100, and 300 mg/kg for 4 weeks after cyclophosphamide (Cy) treatment, respectively. The immunomodulatory effect of BYFP were measured both in vitro and in vivo, and the changes of blood components were also analyzed. We found that BYFP recovered immunosuppression-mediated decreased liver, spleen, and thymus weights as well as up regulation of white blood cell, lymphocyte, and neutrophil in blood. Moreover, BYFP up-regulated IL-2, TNF-${\alpha}$, and IFN-${\gamma}$ pro-inflammatory cytokine production compared to immune suppressed control group, respectively. According to histological studies, BYFP regenerated significantly on Cy-mediated injured spleen at the high doses (BYFP 300) comparison with Cy-treated groups (immunosuppression). Collectively, these findings suggest that BYFP may have the potential as a dietary immunostimulatory agent.