• 제목/요약/키워드: microbial enzyme

검색결과 575건 처리시간 0.025초

Bacillus amyloliquefaciens에서 분리된 단백질 가수분해 효소의 화학적 수식에 의한 저해양상 분석 (Characterization of Endopeptidase of Bacillus amyloliquefaciens S94 by Chemical Modificationtion)

  • 김종일
    • 미생물학회지
    • /
    • 제39권4호
    • /
    • pp.230-234
    • /
    • 2003
  • Bacillus amyloliquefaciens psychrotrophic strain이 분비하는 세포 외 단백질 가수분해효소를 정제하여, endopeptidase 활성에 관한 특성을 분석하였다. Protease SE910로 명명된 효소는 단백질 내부의 leucine에 연결된 peptide 결합만을 가수분해하는 endopeptidase로 작용한다. 효소를 특이한 아미노산 잔기에 작용하는 화학수식제와 반응하였을 때 효소의 활성부위에 관여하는 아미노산 잔기가 수식되었을 때는 효소활성이 저해를 받는다. 본 효소는 serine을 수식하는 PMSF에의해 endopeptidase 활성이 완전히 저해되었으며, 카르복실 기능기를 수식하는 화학수식제에 의해 저해되었고, lysine을 화학수식하는 PLP에 의해서는 큰 영향을 받지 않았다. 이것은 본 효소의 endopeptidase 활성에 serine과 aspartic acid 잔기가 관여하는 것을 의미한다. 구조적으로 leucine을 포함하는 유도체인 bestatin은 효소의 endopeptidase 활성을 경쟁적으로 저해하였다.

Spore Display Using Bacillus thuringiensis Exosporium Protein InhA

  • Park, Tae-Jung;Choi, Soo-Keun;Jung, Heung-Chae;Lee, Sang-Yup;Pan, Jae-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권5호
    • /
    • pp.495-501
    • /
    • 2009
  • A new spore display method is presented that enables recombinant proteins to be displayed on the surface of Bacillus spores via fusion with InhA, an exosporium component of Bacillus thuringiensis. The green fluorescent protein and $\beta$-galactosidase as model proteins were fused to the C-terminal region of InhA, respectively. The surface expression of the proteins on the spores was confirmed by flow cytometry, confocal laser scanning microscopy, measurement of the enzyme activity, and an immunogold electron microscopy analysis. InhA-mediated anchoring of foreign proteins in the exosporium of Bacillus spores can provide a new method of microbial display, thereby broadening the potential for novel applications of microbial display.

Chemical and Biological Indicators of Soil Quality in Conventional and Organic Farming Apple Orchards

  • Lee, Yoon-Jung;Chung, Jong-Bae
    • Journal of Applied Biological Chemistry
    • /
    • 제50권2호
    • /
    • pp.88-96
    • /
    • 2007
  • Organic farming systems based on ecological concepts have the potential to produce sustainable crop yields with no decline in soil and environmental qualities. Recent expansion of sustainable agricultural systems, including organic farming, has brought about need for development of sustainable farming systems based on value judgments for key properties of importance for farming. Chemical and microbiological properties were chosen as indicators of soil quality and measured at soil depth intervals of 5-20 and 20-35 cm in conventional and organic-based apple orchards located in Yeongchun, Gyeongbuk. The orchards were two adjacent fields to ensure the same pedological conditions except management system. Soil pH in organic farming was around 7.5, whereas below 6.0 in conventional farming. Organic farming resulted in significant increases in organic matter and Kjeldahl-N contents compared to those found with conventional management. Microbial populations, biomass C, and enzyme activities (except acid phosphatase) in apple orchard soil of organic farming were higher than those found in conventional farming. Higher microbial quotient ($C_{mic}/C_{org}$ ratio) and lower microbial metabolic quotient for $CO_2(qCO_2)$ in organic farming confirmed that organic farming better conserves soil organic carbon. Biological soil quality indicators showed significant positive correlations with soil organic matter content. These results indicate organic-based farming positively affected soil organic matter content, thus improving soil chemical and biological qualities.

Influence of Allyl Isothiocyanate on the Soil Microbial Community Structure and Composition during Pepper Cultivation

  • Gao, Jingxia;Pei, Hongxia;Xie, Hua
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.978-989
    • /
    • 2021
  • Allyl isothiocyanate (AITC), as a fumigant, plays an important role in soil control of nematodes, soil-borne pathogens, and weeds, but its effects on soil microorganisms are unclear. In this study, the effects of AITC on microbial diversity and community composition of Capsicum annuum L. soil were investigated through Illumina high-throughput sequencing. The results showed that microbial diversity and community structure were significantly influenced by AITC. AITC reduced the diversity of soil bacteria, stimulated the diversity of the soil fungal community, and significantly changed the structure of fungal community. AITC decreased the relative abundance of dominant bacteria Planctomycetes, Acinetobacter, Pseudodeganella, and RB41, but increased that of Lysobacter, Sphingomonas, Pseudomonas, Luteimonas, Pseudoxanthomonas, and Bacillus at the genera level, while for fungi, Trichoderma, Neurospora, and Lasiodiplodia decreased significantly and Aspergillus, Cladosporium, Fusarium, Penicillium, and Saccharomyces were higher than the control. The correlation analysis suggested cellulase had a significant correlation with fungal operational taxonomic units and there was a significant correlation between cellulase and fungal diversity, while catalase, cellulose, sucrase, and urease were the major contributors in the shift of the community structure. Our results will provide useful information for the use of AITC in the assessment of environmental and ecological security.

Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages

  • Ning, Tingting;Wang, Huili;Zheng, Mingli;Niu, Dongze;Zuo, Sasa;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권2호
    • /
    • pp.171-180
    • /
    • 2017
  • Objective: This study investigated the association of enzyme-producing microbes and their enzymes with starch and hemicellulose degradation during fermentation of total mixed ration (TMR) silage. Methods: The TMRs were prepared with soybean curd residue, alfalfa hay (ATMR) or Leymus chinensis hay (LTMR), corn meal, soybean meal, vitamin-mineral supplements, and salt at a ratio of 25:40:30:4:0.5:0.5 on a dry matter basis. Laboratory-scale bag silos were randomly opened after 1, 3, 7, 14, 28, and 56 days of ensiling and subjected to analyses of fermentation quality, carbohydrates loss, microbial amylase and hemicellulase activities, succession of dominant amylolytic or hemicellulolytic microbes, and their microbial and enzymatic properties. Results: Both ATMR and LTMR silages were well preserved, with low pH and high lactic acid concentrations. In addition to the substantial loss of water soluble carbohydrates, loss of starch and hemicellulose was also observed in both TMR silages with prolonged ensiling. The microbial amylase activity remained detectable throughout the ensiling in both TMR silages, whereas the microbial hemicellulase activity progressively decreased until it was inactive at day 14 post-ensiling in both TMR silages. During the early stage of fermentation, the main amylase-producing microbes were Bacillus amyloliquefaciens (B. amyloliquefaciens), B. cereus, B. licheniformis, and B. subtilis in ATMR silage and B. flexus, B. licheniformis, and Paenibacillus xylanexedens (P. xylanexedens) in LTMR silage, whereas Enterococcus faecium was closely associated with starch hydrolysis at the later stage of fermentation in both TMR silages. B. amyloliquefaciens, B. licheniformis, and B. subtilis and B. licheniformis, B. pumilus, and P. xylanexedens were the main source of microbial hemicellulase during the early stage of fermentation in ATMR and LTMR silages, respectively. Conclusion: The microbial amylase contributes to starch hydrolysis during the ensiling process in both TMR silages, whereas the microbial hemicellulase participates in the hemicellulose degradation only at the early stage of ensiling.

Purification and Characterization of the Fibrinolytic Enzyme Produced by Bacillus subtilis KCK-7 from Chungkookjang

  • Paik, Hyun-Dong;Lee, Si-Kyung;Heo, Seok;Kim, Soo-Young;Lee, Hyung-Hoan;Kwon, Tae-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.829-835
    • /
    • 2004
  • A fibrinolytic enzyme has been found in several bacteria isolated from fermented food. This study was carried out to investigate the purification and characteristics of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 originated from Chungkookjang. The fibrinolytic enzyme was purified to homogeneity from the culture supernatant using ammonium sulfate fractionation and chromatographies on DEAE-cellulose and on Sephadex G-100. The final specific activity of the purified enzyme increased 11.0-fold, and the protein amount in the purified enzyme was about 16% of that in the culture supernatant. The molecular weight of the purified enzyme was estimated to be about 45,000 by SDS-PAGE. The optimum pH and temperature for the enzyme activity were pH 7.0 and $60^{\circ}C$, respectively. The enzyme activity was relatively stable up to $60^{\circ}C$ over the pH range of 7.0-10.0. The fibrinolytic enzyme activity increased by $Ca^{2+}$ and $Cu^{2+}$, whereas it was inhibited by $Hg^{2+}$ and $Ba^{2+}$. In addition, it was severely inhibited by PMSF and DFT. It is suggested that the purified enzyme was a serine protease for the fibrinolysis. The purified enzyme could completely hydrolyze fibrin in vitro within 8 h. Hence, it is suggested that the purified enzyme can be put into practice as an effective thrombolytic agent.

Effects of Cordyceps militaris Mycelia on Fibrolytic Enzyme Activities and Microbial Populations In vitro

  • Yeo, Joon-Mo;Lee, Shin-Ja;Shin, Sung-Hwan;Lee, Sung-Hoon;Ha, Jong-Kyu;Kim, Wan-Young;Lee, Sung-Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권3호
    • /
    • pp.364-368
    • /
    • 2011
  • An experiment was conducted to examine the effects of Cordyceps militaris mycelia on microbial populations and fibrolytic enzyme activities in vitro. C. militaris mycelia was added to buffered rumen fluid with final concentrations of 0.00, 0.10, 0.15, 0.20, 0.25 and 0.30 g/L and incubation times were for 3, 6, 9, 12, 24, 36, 48 and 72 h. At all incubation times, the supplementation of C. militaris mycelia linearly increased the number of total viable and celluloytic bacteria; maximum responses were seen with 0.25 g/L supplementation of C. militaris mycelia. The addition of C. militaris mycelia above the level of 0.20 g/L significantly (p<0.01) increased the number of total and cellulolytic bacteria compared with the control. On the other hand, the response of fungal counts to the supplementation of C. militaris mycelia showed a linear decrease; the lowest response was seen with 0.30 g/L supplementation of C. militaris mycelia. It would seem that C. militaris mycelia possess a strong negative effect on rumen fungi since the lowest level of C. militaris mycelia supplementation markedly decreased fungal counts. Carboxylmethyl cellulase activities were linearly increased by the addition of C. militaris mycelia except at 3 and 9 h incubation times. At all incubation times, the supplementation of C. militaris mycelia linearly increased the activities of xylanase and avicelase. In conclusion, the supplementation of C. militaris mycelia to the culture of mixed rumen microorganisms showed a positive effect on cellulolytic bacteria and cellulolytic enzyme activities but a negative effect on fungi.

발효촉진제로 속성 발효한 까나리 어간장의 화학 및 미생물적 특성 (The Chemical and Microbial Characteristics of Northern Sand Lance, Ammodytes personatus, Sauce Manufactured with Fermentation Accelerating Agents)

  • 김우재;김상무
    • 한국식품과학회지
    • /
    • 제35권3호
    • /
    • pp.447-454
    • /
    • 2003
  • 동해안 특산 어종인 까나리어간장을 속성제조하기 위하여 여러 가지 발효촉진제를 첨가하여 제조한 제품의 숙성 중 화학성분 및 생균수 변화를 요약하면 다음과 같다. 총 creatine 량은 오징어내장첨가구는 숙성 2개월째, 나머지 첨가구에서는 3개월째까지 증가하였다가 점차적으로 감소하였다. TBA가는 숙성초기에 급격하게 증가한 다음 일정수준 유지 내지 서서히 감소하였으며, 전 숙성기간에 걸쳐 오징어내장첨가구에서 가장 높았으며 다른 첨가구들 간에는 뚜렷한 차이가 없었다. 유리아미노산 함량은 모든 시료에 있어 glutamic acid, alanine, valine, leucine, 및 lysine 등의 함량이 높았고 숙성기간이 길어질수록 증가하였다. 생균수는 모든 실험구에서 숙성 중 증가하였다가 숙성 후기에 감소하였으며 오징어내장 첨가구가 가장 높은 값을 나타내었다. koji 첨가구가 향기 및 맛에 있어서 가장 우수하였고 그 다음이 오징어내장첨가구이었다. 속성 까나리 어간장을 제조하기 위한 속성 발효제로서 오징어내장 및 koji는 발효기간을 단축시킬 수 있을 뿐 아니라 독특한 맛을 형성하므로 까나리 어간장의 속성제조에 발효촉진제로 사용이 가능하다고 보여 진다.

산불이 지질과 토심의 차이에 따른 산림토양 미생물 군집 활성도에 미치는 영향에 대한 연구 (Effect of Forest Fire on the Microbial Community Activity of Forest Soil according to the Difference between Geology and Soil Depth)

  • 김지슬;김준호;정형철;이은영
    • 지질공학
    • /
    • 제33권1호
    • /
    • pp.15-25
    • /
    • 2023
  • 화성암과 퇴적암으로 이루어진 국내 산림토양 중 표토와 심토에서 채취된 시료의 미생물군집 활성도에 미치는 산불의 영향을 알아보았다. 베타글루코시다아제의 분석결과, 화성암보다 퇴적암의 미생물군집에서 높게 나타났다. 산불 발생 초기에 효소 활성이 관찰되지 않았으나, 시간이 경과됨에 따라 활성이 회복되었다. 또한, 토양의 훼손여부와 상관없이 심토는 표토에 비해 활성이 33~46% 저해되었다. EcoPlate를 이용하여 산불이 미생물 기질이용성에 미친 영향을 알아보았다. 정상토와 훼손토의 평균반응구발색도 값 백분율은 표토에서 각각 52.7~56.8% 및 62.3~83.6%로 나타났다. 산불 발생은 토양 유기물의 분해를 촉진함으로 심토미생물군집의 다양성 및 기질이용성에 영향을 준 것으로 보여진다. 미생물군집의 종다양성지수인 샤논 인덱스(Shanon index, H)는 모든 시료의 표토에서 높게 나타났다. 샤논 풍부도는 퇴적암 토양미생물이 화성암에 비하여 높게 나타났으며, 표토가 심토보다 높게 나타났다.

생물학적 하·폐수처리 공정에서 생물촉진제 첨가의 영향 (Effects of Bio-stimulant Addition on Biological Wastewater Treatment Processes)

  • 이석헌;정진영;박기영
    • 한국물환경학회지
    • /
    • 제21권4호
    • /
    • pp.398-402
    • /
    • 2005
  • The enzyme Xeronine was investigated as a microbial activating substance in biological wastewater treatment processes. Xeronine as bio-stimulant was injected in the anaerobic sludge and the activated sludge treating wastewater in order to examine the effect of hidden benefits. Bio-stimulant did not show significant improvement of anaerobic treatablity. In the aerobic system, higher bio-stimulant dose condition resulted in slightly more removal of nitrogen and phosphorus. Floc aggregation and zone settling velocity as solid-liquid separation factors in activated sludge systems was enhanced by bio-stimulant. Effects of bio-stimulants injection on improvement of water quality and microbial activity did not clear in terms of normal operation conditions.