• Title/Summary/Keyword: microbial destruction

Search Result 27, Processing Time 0.031 seconds

Mass Spectrometry Imaging of Microbes

  • Yang, Hyojik;Goodlett, David R.;Ernst, Robert K.;Scott, Alison J.
    • Mass Spectrometry Letters
    • /
    • v.11 no.3
    • /
    • pp.41-51
    • /
    • 2020
  • Microbes influence many aspects of human life from the environment to health, yet evaluating their biological processes at the chemical level can be problematic. Mass spectrometry imaging (MSI) enables direct evaluation of microbial chemical processes at the atomic to molecular levels without destruction of valuable two-dimensional information. MSI is a label-free method that allows multiplex spatiotemporal visualization of atomic- or molecular-level information of microbial and microberelated samples. As a result, microbial MSI has become an important field for both mass spectrometrists and microbiologists. In this review, basic techniques for microbial MSI, such as ionization methods and analyzers, are explored. In addition, we discuss practical applications of microbial MSI and various data-processing techniques.

Microbial Inhibition and Migration of Nisin-incorporated Antimicrobial Polymer Coating on Paperboard

  • Kim, Young-Min;Lee, Dong-Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.16 no.1
    • /
    • pp.5-7
    • /
    • 2010
  • Two kinds of polymer coating (acrylic polymer and vinyl acetate ethylene copolymer) added with 5% nisin were fabricated on the paperboards and tested in their antimicrobial activity against Micrococcus flavus ATCC 10240 inoculated into water contacting the coating at $10^{\circ}C$. Vinyl acetate ethylene copolymer giving faster and higher nisin migration presented the greater reduction in the microbial count than the other coating, which endorsed that the migrated nisin is mainly responsible for the microbial inhibition or destruction. There was also a slight effect of the coating polymer itself in the microbial inhibition.

  • PDF

Decomposition of Biological Macromolecules by Plasma Generated with Helium and Oxygen

  • Kim Seong-Mi;Kim Jong-Il
    • Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.466-471
    • /
    • 2006
  • In this study, we attempted to characterize the biomolecular effects of an atmospheric-pressure cold plasma (APCP) system which utilizes helium/oxygen $(He/O_2)$. APCP using $He/O_2$ generates a low level of UV while generating reactive oxygen radicals which probably serve as the primary factor in sterilization; these reactive oxygen radicals have the advantage of being capable to access the interiors of the structures of microbial cells. The damaging effects of plasma exposure on polypeptides, DNA, and enzyme proteins in the cell were assessed using biochemical methods.

The Role of Immune Response in Periodontal Disease (치주질환의 면역학)

  • Kim, Kack-Kyun
    • IMMUNE NETWORK
    • /
    • v.3 no.4
    • /
    • pp.261-267
    • /
    • 2003
  • The periodontal diseases are infections caused by bacteria in oral biofilm, a gelatinous mat commonly called dental plaque, which is a complex microbial community that forms and adhere to tooth surfaces. Host immune-pathogen interaction in periodontal disease appears to be a complex process, which is regulated not only by the acquired immunity to deal with ever-growing and -invading microorganisms in periodontal pockets, but also by genetic and/or environmental factors. However, our understanding of the pathogenesis in human periodontal diseases is limited by the lack of specific and sensitive tools or models to study the complex microbial challenges and their interactions with the host's immune system. Recent advances in cellular and molecular biology research have demonstrated the importance of the acquired immune system in fighting the virulent periodontal pathogens and in protecting the host from developing further devastating conditions in periodontal infections. The use of genetic knockout and immunodeficient mouse strains has shown that the acquired immune response, in particular, $CD4^+$ T-cells plays a pivotal role in controlling the ongoing infection, the immune/inflammatory responses, and the subsequent host's tissue destruction.

Effects of Ozone Treatment and Gamma Irradiation on the Microbial Decontamination and Physicochemical Properties of Red Pepper Powder (고춧가루의 오염미생물 제거 및 이화확적 특성에 관한 오존처리와 감마선 조사의 영향)

  • 이성희;이현자;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.465-467
    • /
    • 1997
  • The comparative effects of ozone treatment and gamma irradiation on the sterilization, physicochemical properties and sensory quality of red pepper powder were investigated. As for the sterilization of microorganisms, 7.5~10 KGy of gamma irradiation completely eliminated the coliforms, yeast and molds, and total aerobic bacteria. On the other hand, ozone treatment failed to eliminate the highly contaminated microbial load, especially total aerobic bacteria. The physicochemical properties including capsaicin, capsanthin, browning, fatty acid compositions and sensory quality were not significantly changed by gamma irradiation up to 10 kGy, whereas ozone treatment caused significant changes in fatty acid compositions and destruction of natural pigments (p<0.05). The above results led us to conclude that gamma irradiation was more effective than ozone treatment for the sterilization and maintenance of physicochemical and sensory qualities of red pepper powders.

  • PDF

Pasteurization Efficiency and Physico-chemical Changes of Soymilk HTST Pasteurized Using Microwaves (두유의 마이크로파 고온단시간 살균시 살균효과 및 이화학적 성분 변화)

  • Kim, Suk-Shin;Lee, Joo-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1196-1202
    • /
    • 1999
  • This work was to determine the microbial and physico-chemical changes of HTST-pasteurized soymilk using microwave energy. Soymilk was HTST pasteurized$(at\;90^{\circ}C\;for\;20\;sec)$ by three methods: by heating in a stainless steel tube immersed in a hot water bath(MP0), by heating in a microwave cavity to a defiled temperature and then holding in a hot water bath(MP1), and by both heating and holding in a microwave cavity(MP2). The microbial quality based on the total plate count was in the order of MP0, MP2 and MP1. The three samples pasteurized by different methods showed the similar microbial quality with respect to the coliform count, psychrotrophic bacterial count and phosphatase activity. The destruction of trypsin inhibitor was in the order of MP0, MP1 and MP2. There were no significant differences in pH, titratable acidity, viscosity and vitamin $B_2$ content before and after pasteurization and among the different pasteurization methods. The similar or higher quality retention of the MP1 or MP2 supports the possibility of using microwave energy for the HTST pasteurization of soymilk and other fluid food products.

  • PDF

Recent Advances of Therapeutic Targets for the Treatment of Periodontal Disease

  • Kim, Woo Jin;Soh, Yunjo;Heo, Seok-Mo
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.263-267
    • /
    • 2021
  • Periodontal disease is primarily associated with bacterial infection such as dental plaque. Dental plaque, an oral biofilm harboring a complex microbial community, can cause various inflammatory reactions in periodontal tissue. In many cases, the local bacterial invasion and host-mediated immune responses lead to severe alveolar bone destruction. To date, plaque control, non-surgical, and surgical interventions have been the conventional periodontal treatment modalities. Although adjuvant therapies including antibiotics or supplements have accompanied these procedures, their usage has been limited by antibiotic resistance, as well as their partial effectiveness. Therefore, new strategies are needed to control local inflammation in the periodontium and host immune responses. In recent years, target molecules that modulate microbial signaling mechanisms, host inflammatory substances, and bone immune responses have received considerable attention by researchers. In this review, we introduce three approaches that suggest a way forward for the development of new treatments for periodontal disease; (1) quorum quenching using quorum sensing inhibitors, (2) inflammasome targeting, and (3) use of FDA-approved anabolic agents, including Teriparatide and sclerostin antibody.

Heat Treatments Used in the Dairy Industry (유제품에 이용되는 주요 열처리 조건)

  • Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.230-236
    • /
    • 2020
  • Heat treatment is a fundamental processing technology in the dairy industry. The main purpose of heat treatment is to destroy pathogenic and spoilage promoting microorganisms to ensure milk safety and shelf life. Despite the development of alternative technologies, such as high-pressure processing and pulse field technology for microbial destruction, heat treatment is widely used in the dairy industry and in other food processes to destroy microorganisms. Heat treatment has contributed greatly to the success of food preservation since Pasteur's early discovery that heat treatment of wine and beer could prevent their deterioration, and since the introduction of milk pasteurization in the 1890s. In Korea, food labeling standards do not stratify heat treatments into low temperature, high temperature, and ultra-high temperature methods. Most milk is produced in Korea by pasteurization, with extended shelf life (ESL : 125--140℃ / 1-10 s). Classification based on temperature (i.e. low, high, and ultra-high), is meaningless.

SCANNING ELECTRON MICROSCOPIC STUDY OF IMPLANT SURFACE AFTER Er,Cr:YSGG LASER IRRADIATION (Er,Cr:YSGG 레이저를 조사한 임플란트 표면의 주사전자현미경적 연구)

  • Jo, Pil-Kwy;Min, Seung-Ki;Kwon, Kyung-Hwan;Kim, Young-Jo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.454-469
    • /
    • 2006
  • Today, there is considerable evidence to support a cause-effect relationship between microbial colonization and the pathogenesis of implant failures. The presence of bacteria on implant surfaces may result in an inflammation of the peri-implant mucosa, and, if left untreated, it may lead to a progressive destruction of alveolar bone supporting the implant, which has been named as peri-impantitis. Several maintenance regimens and treatment strategies for failing implants have been suggested. Recently, in addition to these conventional tools, the use of different laser systems has also been proposed for treatment of peri-implant infections. As lasers can perform excellent tissue ablation with high bactericidal and detoxification effects, they are expected to be one of the most promising new technical modalities for treatment of failing implants. It is introduced that Er,Cr:YSGG laser, operating at 2780nm, ablates tissue by a hydrokinetic process that prevents temperature rise. We studied the change of the titanium implant surface under scanning electron microscopy after using Er,Cr:YSGG laser at various energies, irradiation time. In this study, Er,Cr:YSGG laser irradiation of implant fixture showed different effects according to implant surface. Er,Cr:YSGG laser in TPS surface with RBM not alter the implant surface under power setting of 4 Watt(W) and irradiation time of 30sec. But in TPS surface with $Ca_3P$ coating alter above power setting of 2W and irradiation time of 10sec. TPS surface with RBM showed microfracture in 4W, 30sec and TPS surface with $Ca_3P$ coating showed destruction of fine crystalline structure, melting in excess of 2W, 10sec. We concluded that proper power setting, air, water of each implant surface must be investigated and implant surface must be irradiated under the damaged extent.

Effects of lipopolysaccharide and CpG-DNA on burn-induced skin injury

  • Park, Byoung-Kwon;Kim, Dong-Bum;Cho, Sun-Hee;Seo, Jae-Nam;Park, Jae-Bong;Kim, Yong-Sun;Choi, Ihn-Geun;Kwon, Hyeok-Yil;Lee, Young-Hee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.44 no.4
    • /
    • pp.273-278
    • /
    • 2011
  • Destruction of the skin barrier by thermal injury induces microbial invasion, which can lead to the development of systemic infection and septic shock. Microbial pathogens possess pathogen-associated molecular patterns (PAMPs), which are recognized by conserved receptors. To understand the role of PAMPs in thermal injury-induced mice, LPS or CpG-DNA were topically applied to dorsal skin after thermal injury. We observed an increase in the number of inflammatory cell infiltrates as well as thickening in the dermis upon treatment with LPS or CpG-DNA. We also found that expression of IL-$1{\beta}$, MIP-2, and RANTES induced by thermal injury was enhanced by LPS or CpG-DNA. In addition, the proportions of $CD4^+$ and $CD^8+$ T cells in the spleen and lymph nodes were altered by LPS or CpG-DNA. These results provide important information concerning PAMPs-induced inflammation upon thermal injury and provide a basis for studying the role of PAMPs in thermal injury-induced complications.