• Title/Summary/Keyword: microbial density

Search Result 331, Processing Time 0.045 seconds

Phenanthrene 오염토양의 정화를 위한 동전기-생물학적복원기술의 적용과 전류밀도의 영향

  • 김상준;박지연;이유진;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.181-185
    • /
    • 2004
  • Electrokinetic bioremediation was conducted on phenanthrene-contaminated soil to study the effects of soil temperature and pH on microbial population and removal efficiency at different current densities from 0.63 to 3.13 mA cm$^{-2}$ . Microorganism used in the biodegradation of phenanthrene was Sphingomonas sp. 3Y, which was isolated from a diesel-contaminated site. The microorganism was successfully penetrated into the contaminated soil by electrokinetic phenomena and the highest microbial population was observed in the middle region of soil specimen where soil pH was near neutral. Therefore, phenanthrene removal occurred mainly at anode and middle parts of soil specimen due to a relatively high microbial population. Also, the highest removal efficiency of 68.8% was obtained at 1.88 mA cm$^{-2}$ while low degradation was detected at 3.13 mA cm$^{-2}$ . It was presumably because the soil temperature at 1.88 mAcm$^{-2}$ was close to the appropriate temperature of about 30'c while the temperature increase to above 45$^{\circ}C$ at 3.13 mA cm$^{-2}$ inhibited the microbial activity severely.

  • PDF

Culture of Human Umbilical Vein Endothlial Cells Using 96-well Microplates and Position Effects on Cell Growth

  • Lee, Soohyun;Insook Sohn;Park, Myungjin;Park, Inchul;Youngsook Sohn;Seokil Hong;Taeboo Choe
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.3
    • /
    • pp.207-210
    • /
    • 2000
  • When endothelial cells isolated isolated from human umbilical venis were cultred for 6dary using 96-well microplates, the final cell density in each was fiund not to be the same although the medium composition of each well was exactly the same. Cell growth in the wells located at the periphery of a microplate was low, while that in the central area of the plate was high. A possible cause for different rate of growth was proposed as the uneven concentration of oxygen in the culture medium of each well.

  • PDF

The effects of heavy metals on microbial biomass and activity in contaminated urban park soils (도시 공원의 토양에서 중금속이 미생물의 생체량과 활성에 미치는 영향)

  • Kim, Ok-Kyung;Paul Birch
    • The Korean Journal of Ecology
    • /
    • v.15 no.3
    • /
    • pp.267-279
    • /
    • 1992
  • The relationship between pb, zn, cd, and the microbial biomass and activity were investigated in three public park soils of central and outer london. Variability with distance from the roadside and profile were studied. The heavey metal concentrations were the highest in hampstead heath and hyde park with high trafic density and the lowest in hainault. The highest concentrations of heavy metals were found adjacent to the roadside in the upper parts of the soil profile. Dehydrogenase activity, adenosine tri-phosphate and ergosterol contents used as indices of micrbial biomass and activity, were generally higher in hainadult, and also higher in the upper pats of the soil profile. Simple regression analysis indicated that the microbial biomass and activity were affected significantly by moisture content, water holding capacity, total organic carbon, total nitrogen, and organic mater rather than heavy metal concentration. Highest inputs of nitrogen and carbon were associated with high inputs of heavey metals, all three being derived from vehicle emissions adjacent to the road. The hyde park and hampstead heath microbial populations were able to respond to the c and n input positively by increase in biomass and activity, whereas the hainault populations could not. This rsult suggrsts adaptation in he former to heavy matals, but not in the latter.

  • PDF

Effects of Grubbing by Wild Boars on the Biological Activities of Forest Floor (멧돼지(Sus scrofa coreanus Heude)의 임상 교란이 토양의 생물학적 활성에 미치는 영향)

  • Cha, Sangsub;Lee, Sang-Hoon;Chae, Hee-Myung;Shim, Jae Kuk
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.6
    • /
    • pp.902-910
    • /
    • 2012
  • This study has been carried out to determine the effects of disturbances from wild boar grubbing on the functions of ecosystem. The experiments was performed in Mt. Jumbong of Long-term Ecological Research Sites of the Ministry of Environment. We measured soil physical properties, soil respiration($CO_2$), microbial biomass C, and soil enzyme activities from both disturbed and control plots. The disturbance sites were divided into two parts, mounds and pits. Soil organic matter contents were highest value at the control plots and lowest at the pit plots, respectively at 20.22% and 15.52%. The soil bulk densities were highest at the pit plots. Soil microbial biomass C and $CO_2$ evolution were significantly higher at the control plots compared to the disturbed plots. The results were positively correlated with soil organic matter contents. The cellulase activity and invertase activity in the soil showed similar pattern as the microbial biomass C and $CO_2$ evolution results. The cellulase activity and invertase activity in the soil were positively correlated with soil microbial biomass C. Soil organic matter contents seemed to affect the soil enzyme activities. The nitrate reductase activities were highest at the pit plots, which showed positive correlation with soil bulk density. The study results showed that the grubbing disturbances by wild boars induced the changes in soil properties, which affected soil microbial activities.

Evaluation of Biogas Production Rate by using Various Electrodes Materials in a Combined Anaerobic Digester and Microbial Electrochemical Technology (MET) (미생물 전기화학 기술이 적용된 단일 혐기성소화조에서 전극재질에 따른 바이오가스 생성 효율 평가)

  • Shin, Wonbeom;Park, Jungyu;Lee, Beom;Kim, Yonggeun;Jun, Hangbae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.82-88
    • /
    • 2017
  • MET (Microbial Electrochemical Technology), such as MFC (Microbial Fuel Cell) and MEC (Microbial Electrolysis Cell), is a promising technology for producing sustainable biogas from an anaerobic digester (AD). At current stage, however, the most likely limiting factors, large internal resistances, should be overcome for successful scale up of this technology. Various researchers reported that application of electrode materials containing high current density, increase of ion strength and conductivity, configuration of electrode are good methods for minimizing internal resistances. Recently, stainless steel is receiving great attention because of not only high performance and durability but also low cost. Therefore, in this study, we evaluate electrochemical characteristics and biogas production rate using various electrode materials and configuration (graphite carbon coated with catalysts ($GC-C_M$) or not (GC), stainless steel mesh (SUS-M) and plate (SUS-P)). As the results, current densities of $GC-C_M$, GC, SUS-P, SUS-M were 2.03, 1.36, 1.04, $1.13A/m^2$, respectively. Methane yields of $GC-C_M$, GC, SUS-P, SUS-M were 0.27, 0.14, 0.19, 0.21 $L-CH_4/g-COD_{rem}$., respectively. Stainless steel shows high current density and methane yield, which are similar as graphite carbon coated with catalysts.

Microbial Distribution at Sediments of Lake Daechung (대청호 퇴적층의 미생물 분포 밀도)

  • Park, Dong-Jin;Yuk, Youn-Su;Park, Dae-Gyun;Lee, Sang-Hwa;Oh, Hee-Mock;Kim, Chang-Jin
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.183-187
    • /
    • 1998
  • In order to characterize the microbial distribution at sediments of Lake Daechung, soil samples were collected at two depths of 0.5~2 cm and 19~21 cm of Chudong(static) and Hoenam(streaming) site on May 18th(before rainy season) and on August 24th in 1998(after rainy season), and then the density(CFU/g soil) of microorganisms including bacteria, actinomycetes, and fungi was investigated by the viable cell counting method. Microbial density at streaming site was on the whole 3.9-fold higher than that at static site. Bacterial densities examined before and after rainy season was revealed to be similar, whereas actinomycetes and fungi exhibited higher distribution after and before rainy season, respectively. The microbial distribution was not generally reduced with the increase of depth and was rather higher at some deep sites. On comparing with the microbial densities of grass land around the lake, bacteria, actinomycetes, and fungi at lake sediments on the average showed the distribution of 52.9%, 35%, and 7%, respectively. However, their distribution except for fungi which exhibited 71.2% was mostly found to be somewhat higher than at the shore of lake.

  • PDF

The Effect of Hydraulic Retention Time on The Power Density in a Horizontal Flow Microbial Fuel Cell (수평 흐름형 미생물 연료전지에서 수리학적 체류시간이 전력수율에 미치는 영향)

  • Lee, Chae-Young;Park, Su-Hee;Woo, Jeong-Hei;Yoo, Kyu-Seon;Jeong, Jea-Woo;Song, Youn-Chae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.109-114
    • /
    • 2011
  • This study was conducted to investigate the effect of hydraulic retention time(HRT) on the power density in a horizontal flow microbial fuel cell(MFC) reactor. When HRTs were 15min, 30min, 60min and 180min, maximum power densities were $24.7mW/m^2$, $27.3mW/m^2$, $22.8mW/m^2$ and $17.2mW/m^2$, respectively. The highest power density was obtained at HRT of 30min. It was 59% improvement when compared to the power density at an HRT of 180min. When HRT was increased, COD removal rate increased whereas the coulombic efficiency remained constant. The result shows that the optimal performance of the horizontal flow MFC reactor could be achieved at HRT of 30min.

Polychlorobiphenyl (PCB) 토양오염복원: PCB 제거 토양미생물들의 군집과 기능을 효과적으로 분석하는 신 genomics 방법개발에 관한 연구

  • Park Jun-Hong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.28-30
    • /
    • 2005
  • Because of high population diversity in soil microbial communities, it is difficult to accurately assess the capability of biodegradation of toxicant by microbes in soil and sediment. Identifying biodegradative microorganisms is an important step in designing and analyzing soil bioremediation. To remove non-important noise information, it is necessary to selectively enrich genomes of biodegradative microorganisms fromnon-biodegradative populations. For this purpose, a stable isotope probing (SIP) technique was applied in selectively harvesting the genomes of biphenyl-utilizing bacteria from soil microbial communities. Since many biphenyl-using microorganisms are responsible for aerobic PCB degradation In soil and sediments, biphenyl-utilizing bacteria were chosen as the target organisms. In soil microcosms, 13C-biphenyl was added as a selective carbon source for biphenyl users, According to $13C-CO_2$ analysis by GC-MS, 13C-biphenyl mineralization was detected after a 7-day of incubation. The heavy portion of DNA(13C-DNA) was separated from the light portion of DNA (12C-DNA) using equilibrium density gradient ultracentrifuge. Bacterial community structure in the 13C-DNAsample was analyzed by t-RFLP (terminal restriction fragment length polymorphism) method. The t-RFLP result demonstates that the use of SIP efficiently and selectively enriched the genomes of biphenyl degrading bacteria from non-degradative microbes. Furthermore, the bacterial diversity of biphenyl degrading populations was small enough for environmental genomes tools (metagenomics and DNA microarrays) to be used to detect functional (biphenyl degradation) genes from soil microbial communities, which may provide a significant progress in assessing microbial capability of PCB bioremediation in soil and groundwater.

  • PDF

Responses of Low-Quality Soil Microbial Community Structure and Activities to Application of a Mixed Material of Humic Acid, Biochar, and Super Absorbent Polymer

  • Li, Fangze;Men, Shuhui;Zhang, Shiwei;Huang, Juan;Puyang, Xuehua;Wu, Zhenqing;Huang, Zhanbin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1310-1320
    • /
    • 2020
  • Low-quality soil for land reuse is a crucial problem in vegetation quality and especially to waste disposal sites in mining areas. It is necessary to find suitable materials to improve the soil quality and especially to increase soil microbial diversity and activity. In this study, pot experiments were conducted to investigate the effect of a mixed material of humic acid, super absorbent polymer and biochar on low-quality soil indexes and the microbial community response. The indexes included soil physicochemical properties and the corresponding plant growth. The results showed that the mixed material could improve chemical properties and physical structure of soil by increasing the bulk density, porosity, macro aggregate, and promote the mineralization of nutrient elements in soil. The best performance was achieved by adding 3 g·kg-1 super absorbent polymer, 3 g·kg-1 humic acid, and 10 g·kg-1 biochar to soil with plant total nitrogen, dry weight and height increased by 85.18%, 266.41% and 74.06%, respectively. Physicochemical properties caused changes in soil microbial diversity. Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria were significantly positively correlated with most of the physical, chemical and plant indicators. Actinobacteria and Armatimonadetes were significantly negatively correlated with most measurement factors. Therefore, this study can contribute to improving the understanding of low-quality soil and how it affects soil microbial functions and sustainability.

Effect of sous-vide cooking conditions on the physicochemical, microbiological and microstructural properties of duck breast meat

  • Dong-Min Shin;Jong Hyeok Yune;Dong-Hyun Kim;Sung Gu Han
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1596-1603
    • /
    • 2023
  • Objective: Sous-vide cooking offers several advantages for poultry meat, including enhanced tenderness, reduced cooking loss, and improved product yield. However, in duck meat, there are challenges associated with using the sous-vide method. The prolonged cooking time at low temperatures can lead to unstable microbial and oxidative stabilities. Thus, we aimed to assess how varying sous-vide cooking temperatures and durations affect the physicochemical and microbial characteristics of duck breast meat, with the goal of identifying an optimal cooking condition. Methods: Duck breast meat (Anas platyrhynchos) aged 42 days and with an average weight of 1,400±50 g, underwent cooking under various conditions (ranging from 50℃ to 80℃) for either 60 or 180 min. Then, physicochemical, microbial, and microstructural properties of the cooked duck breast meat were assessed. Results: Different cooking conditions affected the quality attributes of the meat. The cooking loss, lightness, yellowness, Hue angle, whiteness, and thiobarbituric acid reactive substance (TBARS) values of the duck breast meat increased with the increase in cooking temperature and time. In contrast, the redness and chroma values decreased with the increase in cooking temperature and time. Cooking of samples higher than 60℃ increased the volatile basic nitrogen contents and TBARS. Microbial analysis revealed the presence of Escherichia coli and Coliform only in the samples cooked at 50℃ and raw meat. Cooking at lower temperature and shorter time increased the tenderness of the meat. Microstructure analysis showed that the contraction of myofibrils and meat density increased upon increasing the cooking temperature and time. Conclusion: Our data indicate that the optimal sous-vide method for duck breast meat was cooking at 60℃ for 60 min. This temperature and time conditions showed good texture properties and microbial stability, and low level of TBARS of the duck breast meat.