DOI QR코드

DOI QR Code

The Effect of Hydraulic Retention Time on The Power Density in a Horizontal Flow Microbial Fuel Cell

수평 흐름형 미생물 연료전지에서 수리학적 체류시간이 전력수율에 미치는 영향

  • Lee, Chae-Young (Department of Civil Engineering, The University of Suwon) ;
  • Park, Su-Hee (Department of Civil Engineering, The University of Suwon) ;
  • Woo, Jeong-Hei (Department of Environmental Engineering, Korea Maritime University) ;
  • Yoo, Kyu-Seon (Department of Civil and Environmental Engineering, Jeonju University) ;
  • Jeong, Jea-Woo (Department of Environmental Engineering, Gyeongnam National University of Science and Technology) ;
  • Song, Youn-Chae (Department of Environmental Engineering, Korea Maritime University)
  • 이채영 (수원대학교 토목공학과) ;
  • 박수희 (수원대학교 토목공학과) ;
  • 우정희 (한국해양대학교 환경공학과) ;
  • 유규선 (전주대학교 토목환경공학과) ;
  • 정재우 (경남과학기술대학교 환경공학과) ;
  • 송영채 (한국해양대학교 환경공학과)
  • Received : 2011.03.10
  • Accepted : 2011.03.26
  • Published : 2011.03.31

Abstract

This study was conducted to investigate the effect of hydraulic retention time(HRT) on the power density in a horizontal flow microbial fuel cell(MFC) reactor. When HRTs were 15min, 30min, 60min and 180min, maximum power densities were $24.7mW/m^2$, $27.3mW/m^2$, $22.8mW/m^2$ and $17.2mW/m^2$, respectively. The highest power density was obtained at HRT of 30min. It was 59% improvement when compared to the power density at an HRT of 180min. When HRT was increased, COD removal rate increased whereas the coulombic efficiency remained constant. The result shows that the optimal performance of the horizontal flow MFC reactor could be achieved at HRT of 30min.

본 연구에서는 수평 흐름형 미생물 연료전지를 이용하여 수리학적 체류시간에 따른 전력수율을 평가하였다. 수리학적 체류시간 15분, 30분, 60분 및 180분의 경우 전력수율은 각각 $24.7mW/m^2$, $27.3mW/m^2$, $22.8mW/m^2$$17.2mW/m^2$으로 나타났다. 수리학적 체류시간을 30분으로 유지하는 경우 전력수율이 가장 높게 나타났으며 수리학적 체류시간 180분과 비교시 전력수율이 최대 59% 증가하였다. COD 제거율은 수리학적 체류시간 증가에 따라 높아지는 경향을 보였으나 쿨롱효율은 일정한 값을 유지하였다. 이와 같은 결과를 통해 수리학적 체류시간을 30분으로 유지하는 경우 수평 흐름형 미생물 연료전지성능을 최대로 발휘할 수 있다.

Keywords

References

  1. Ouitrakul, S., Sriyudthsak, M., Charojrochkul, S., and Kakizono, T., "Impedance analysis of bio-fuel cell electrodes", Biosensors and Bioelectronics, 23, pp. 721-727 (2007). https://doi.org/10.1016/j.bios.2007.08.012
  2. Sarma, P. N., "Integrated function of microbial fuel cell(MFC) as bio electrochemical treatment system associated with bioelectricity generation under higher substrate load", Biosensors and Bioelectronics, 24, pp. 2021-2027 (2009). https://doi.org/10.1016/j.bios.2008.10.011
  3. Logan, B. E., "Scaling up microbial fuel cells and other bioelectrochemical systems", Microbiol Biotechnol, 85, pp. 1665-1671 (2010). https://doi.org/10.1007/s00253-009-2378-9
  4. 송영채, 우정희, 유규선, "미생물연료전지의 재료 : 전극 및 분리막, 집전체", 대한환경공학지, 31, pp. 693-704 (2009).
  5. Donlan, R. M., Pipes, W. O., and Yohe, T. L., "Biofilm formation on cast iron substrate in water distribution systems", Water Research, 28, pp. 1497-1503 (1994). https://doi.org/10.1016/0043-1354(94)90318-2
  6. Li, Z., Zhang, X., Zeng, Y., and Lei, L., "Electricity production by an overflow-type wetted-wall microbial fuel cell", Bioresource Technology, 100, pp. 2551-2555 (2009). https://doi.org/10.1016/j.biortech.2008.12.018
  7. Feng, Y., Lee, H., Wang, X., Liu, Y., and He, W., "Continuous electricity generation by a graphite granule baffled air-cathode microbial fuel cell", Bioresource Technology, 101, pp. 632-638 (2010). https://doi.org/10.1016/j.biortech.2009.08.046
  8. Li, Z. L., Yao, L., Kong, L., and Liu, H., "Electricity generation using a baffled microbial fuel cell convenient for stacking" Bioresource Technology, 99, pp. 1650-1655 (2008). https://doi.org/10.1016/j.biortech.2007.04.003
  9. Lorenzo, M. D., Curtis, T. P., Head, I. M., and Scott, K., "A single-chamber microbial fuel cell as a biosensor for wastewaters", Water Research, 43, pp. 3145-3154 (2009). https://doi.org/10.1016/j.watres.2009.01.005
  10. Song, Y. C., Yoo, K. S., and Lee, S. K., "Surface floating, air cathode, microbial fuel cell with horizontal flow for continuous power production from wastewater", Journal of Power Sources, 195, pp. 6478-6482 (2010). https://doi.org/10.1016/j.jpowsour.2010.04.041
  11. Lovley, D. R., and Phillips, E. J. P., "Organic matter mineralization with reduction of ferric iron in anaerobic sediments", Applied and Environmental Microbiology, 51, pp. 683-689 (1986).
  12. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R., and Wolfe, R. S., "Methanogens: reevaluation of unique biological group", Microbiological Reviews, 43, pp. 260-296 (1979).
  13. APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 21th edition, American Public Health Association, pp. 5 16-17 (2005).