• Title/Summary/Keyword: microbial contaminant

Search Result 48, Processing Time 0.028 seconds

Boosting Power Generation by Sediment Microbial Fuel Cell in Oil-Contaminated Sediment Amended with Gasoline/Kerosene

  • Aleman-Gama, Elizabeth;Cornejo-Martell, Alan J.;Kamaraj, Sathish Kumar;Juarez, Katy;Silva-Martinez, Susana;Alvarez-Gallegos, Alberto
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.308-320
    • /
    • 2022
  • The high internal resistance (Rint) that develops across the sediment microbial fuel cells (SMFC) limits their power production (~4/10 mW m-2) that can be recovered from an initial oil-contaminated sediment (OCS). In the anolyte, Rint is related to poor biodegradation activity, quality and quantity of contaminant content in the sediment and anode material. While on the catholyte, Rint depends on the properties of the catholyte, the oxygen reduction reaction (ORR), and the cathode material. In this work, the main factors limiting the power output of the SMFC have been minimized. The power output of the SMFC was increased (47 times from its initial value, ~4 mW m-2) minimizing the SMFC Rint (28 times from its initial value, 5000 ohms), following the main modifications. Anolyte: the initial OCS was amended with several amounts of gasoline and kerosene. The best anaerobic microbial activity of indigenous populations was better adapted (without more culture media) to 3 g of kerosene. Catholyte: ORR was catalyzed in birnessite/carbon fabric (CF)-cathode at pH 2, 0.8M Na2SO4. At the class level, the main microbial groups (Gammaproteobacteria, Coriobacteriia, Actinobacteria, Alphaproteobacteria) with electroactive members were found at C-anode and were associated with the high-power densities obtained. Gasoline is more difficult to biodegrade than kerosene. However, in both cases, SMFC biodegradation activity and power output are increased when ORR is performed on birnessite/CF in 0.8 M Na2SO4 at pH 2. The work discussed here can focus on bioremediation (in heavy OCS) or energy production in future work.

Monitoring the Bacterial Community Dynamics in a Petroleum Refinery Wastewater Membrane Bioreactor Fed with a High Phenolic Load

  • Silva, Cynthia C.;Viero, Aline F.;Dias, Ana Carolina F.;Andreote, Fernando D.;Jesus, Ederson C.;De Paula, Sergio O.;Torres, Ana Paula R.;Santiago, Vania M.J.;Oliveira, Valeria M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.21-29
    • /
    • 2010
  • The phenolic compounds are a major contaminant class often found in industrial wastewaters and the biological treatment is an alternative tool commonly employed for their removal. In this sense, monitoring microbial community dynamics is crucial for a successful wastewater treatment. This work aimed to monitor the structure and activity of the bacterial community during the operation of a laboratory-scale continuous submerged membrane bioreactor (SMBR), using PCR and RT-PCR followed by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA libraries. Multivariate analyses carried out using DGGE profiles showed significant changes in the total and metabolically active dominant community members during the 4-week treatment period, explained mainly by phenol and ammonium input. Gene libraries were assembled using 16S rDNA and 16S rRNA PCR products from the fourth week of treatment. Sequencing and phylogenetic analyses of clones from the 16S rDNA library revealed a high diversity of taxa for the total bacterial community, with predominance of Thauera genus (ca. 50%). On the other hand, a lower diversity was found for metabolically active bacteria, which were mostly represented by members of Betaproteobacteria (Thauera and Comamonas), suggesting that these groups have a relevant role in the phenol degradation during the final phase of the SMBR operation.

Assessment of Hydrogeochemical Characteristics and Contaminant Dispersion of Aquifer around Keumsan Municipal Landfill (금산 매립장 주변 대수층의 수리지화학적 특성 및 오염 확산 평가)

  • Oh, In-Suk;Ko, Kyung-Seok;Kong, In-Chul;Ku, Min-Ho
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.657-672
    • /
    • 2008
  • The purposes of this study are to investigate the hydrogeochemical characteristics of groundwaters around Keumsan municipal landfill, and to evaluate the contaminant dispersion from the landfill and its environmental impact. To achieve these goals, groundwater quality logging, hydrochemical analysis, multivariate statistical analysis, and contaminant transport modeling were performed. The water quality logging indicated a leaking from the landfill at the depth of 4-12m around a leachate sump. Electrical conductivity data indicated that groundwaters within 70-100m from landfill were affected by the landfill leakage. Principal components 1 and 2 obtained from principal components analysis (PCA) reflect the influence of leachate and the characteristics of aquifer media, respectively. The results of principal component analysis also indicated the natural attenuation processes such as cation exchange, sorption, and microbial biodegradation. The modeling results showed that groundwater flow westward along a valley from the landfill and contaminants transport accordingly.

Effect of Sulfate Source on Removal Efficiency in Electrokinetic Bioremediation of Phenanthrene-Contaminated Soil (Pnenanthrene-오염토양의 동전기 생물학적복원에서 제거효율에 대한 황산염원의 영향)

  • Kim, Sang-Joon;Park, Ji-Yeon;Lee, You-Jin;Yang, Ji-Won
    • KSBB Journal
    • /
    • v.21 no.6 s.101
    • /
    • pp.428-432
    • /
    • 2006
  • This study investigated the effect of sulfate source on removal efficiency in electrokinetic bioremediation which needs sulfate to degrade contaminants by an applied microorganism. The representative contaminant and the applied microorganism were phenanthrene and Sphingomonas sp. 3Y, respectively. When magnesium sulfate was used, the magnesium ion combined with hydroxyl ion electrically-generated at cathode to cause the decrease of electrolyte pH, and then the microbial activity was inhibited by that. When ammonium sulfate and disodium sulfate were used to solve the pH control problem, the pH values of electrolyte and soil solution were maintained neutrally, and also the high microbial activity was observed. With the former sulfate source, however, ammonium retarded the phenanthrene degradation, and so the removal efficiency decreased to 12.0% rather than 21.8% with magnesium sulfate. On the other hand, the latter improved the removal efficiency to 27.2%. This difference of removal efficiency would be outstanding for an elongated treatment period.

Change of Wetland Microbial Activities after Creation of Constructed Wetlands (인공습지 조성 후 습지미생물활성도 변화에 관한 연구)

  • Lee, Ja-Yeon;Kim, Bo-Ra;Park, So-Young;Sung, Ki-June
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.17-26
    • /
    • 2010
  • To understand the initial changes in the microbial activities of wetland soil after construction, dehydrogenase activity (DHA) and denitrification potential (DNP) of soil from 1 natural wetland and 2 newly constructed wetlands were monitored. Soil samples were collected from the Daepyung marsh as a natural wetland, a treatment wetland in the West Nakdong River, and an experimental wetland in the Pukyong National University, Busan. The results showed that the DHA of the natural wetland soil was 6.1 times higher than that of the experimental wetland and similar to that of the treatment wetland 6 months after wetland construction (fall). Few differences were observed in the DNP between the soil samples from the natural wetland and 2 constructed wetlands four months after wetland construction (summer). However, 6 months after the construction (fall), the DNP of the soil samples from the natural wetland was 12.9 times and 1.8 times higher than that of the experimental wetland and the treatment wetland, respectively. These results suggested that the presence of organic matter as a carbon source in the wetland soil affects the DHA of wetland soil. Seasonal variation of wetland environment, acclimation time under anaerobic or anoxic wetland conditions, and the presence of carbon source also affect the DNP of the wetland soil. The results imply that the newly constructed wetland requires some period of time for having the better contaminant removal performance through biogeochemical processes. Therefore, those microbial activities and related indicators could be considered for wetland management such as operation and performance monitoring of wetlands.

Discharge Characteristics of the Indicator Microorganisms of Combined Sewer Overflows (합류식 하수관거 월류수의 지표미생물 배출 특성)

  • Kim, Geonha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.627-635
    • /
    • 2006
  • Combined sewer overflow (CSOs) is a primary diffuse source degrading water quality of urban streams. In this study, CSOs caused by 5 different rainfall events at an urban watershed located in Daejeon city were monitored for the indicator microorganism concentrations. Event mean concentration (EMC) of the indicator microorganisms were: total coliform = $2.46{\times}10^6CFU/100mL$; fecal coliform = $1.01{\times}10^6CFU/100mL$; E.coli = $5.20{\times}10^5CFU/100mL$; and Fecal Streptococci = $6.08{\times}10^5CFU/100mL$. In addition, coliform concentrations were well correlated with suspended solid concentrations and the first flush effects were identified. Settling tests were carried out to estimate removal rate of indicator organisms by sedimentation from CSOs. As microorganisms are discharged in association with suspended solid, ten minutes of settlement can lower 44% of indicator microorganism leading.

Discharge Characteristics of Indicator Microorganisms from Agricultural-Forestry Watersheds (농지-임야에서 발생하는 지표미생물 유출 특성)

  • Kim, Geonha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.153-160
    • /
    • 2008
  • To estimate microbial contaminant loading discharged from diffuse sources, rainfall runoff of six rainfall events were monitored at three study watersheds of forestry and agricultural land use. Monitored indicator microorganism constituents were total coliform (TC), fecal coliform (FC), Escherichia coli (EC), and fecal streptococcus (FS). Soil loss during elevated flow rate caused higher suspended solid concentrations. Indicator microorganism concentrations were closely related with flow rate. TC event mean concentration (EMC) from unpolluted forestry was $5.3{\times}10^3CFU/100ml$, FC EMC was $1.4{\times}10^3CFU/100ml$, EC EMC was $1.1{\times}10^3CFU/100ml$, and FS EMC was $2.9{\times}10^2CFU/100ml$. From a watershed with agricultural-forestry land use, TC EMC was $1.7{\times}10^5CFU/100ml$, FC EMC was $8.5{\times}10^4CFU/100ml$, EC EMC was $8.9{\times}10^4CFU/100ml$, and FS EMC was $3.4{\times}10^4CFU/100ml$. Mixed land use of agricultural-forestry with bigger area, TC EMC was $1.9{\times}10^5CFU/100ml$, FC EMC was $9.6{\times}10^4CFU/100ml$, EC EMC was $7.0{\times}10^4CFU/100ml$, and FS EMC was $5.1{\times}10^4CFU/100ml$.

Arsenic Adsorption onto Pseudomonas aeruginosa Cell Surface (Pseudomonas aeruginosa 표면에 대한 비소의 흡착특성)

  • Lee Jong-Un;Park Hyun-Sung
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.525-534
    • /
    • 2005
  • Adsorption experiments for As(V) and As(III) onto the surfaces of aerobic Pseudomonas aeruginosa, which can be readily isolated from natural media, were conducted under nutrient-absent conditions. While a small amount of As(III) was adsorbed on the bacterial cell surfaces, As(V) was not effectively removed from the solution through adsorption. The result was likely due to the electrostatic repulsion between anionic compounds of aqueous As(V) and cell surfaces of f aeruginosa. However, the bacteria forming biofilm reduced a large amount of aqueous As(V) to As(III), which indicated that microorganisms in most oligotrophic, natural geologic settings can mediate the behavior of aqueous As. Biobarriers designed to remove the various heavy metals in contaminant plume may practically lead to the enhancement of toxicity and mobility of As.

Evaluation of the Laboratory-Scale Cometabolic Air Sparging Process : Characterization of Indigeneous Microorganism on MTBE Degradation (실험실 규모 Cometabolic Air Sparging 공정 적용 특성 평가 : 토양 내 활성미생물 별 MTBE 분해특성)

  • An, Sang-Woo;Lee, Si-Jin;Chang, Soon-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Cometabolic air sparging (CAS) is a new and innovative technology that uses air sparging principles but attempts to optimize in situ contaminant degradation by adding a growth substrate to saturated zone. CAS relies on the degradation of the primary growth substrate and cometabolic substrate transformation in the saturated zone and in the vadose zone for volatilized contaminants. In this study, we have investigated to determine MTBE degradation pattern and microbial activity variation if using propane as a primary substrate at the condition of considering air injection rate and air injection pattern. Laboratory-scale two-dimentional aquifer physical model studies were used and the experimental results were represented that the optimal conditions were as air injection rate of 1,000 mL/min and pulsed air injection pattern (15 min on/off). Over 1,000 mL/min air injection rate and continuous air injection pattern was no affected to increase DO concentration. On the other hand, Injection of propane and propane-utilizing bacteria degraded MTBE partially. And also, injection of propane- and MTBE-utilizing bacteria effectively degraded MTBE and TBA production was observed.

Biodegradation of Diesel by Rhodococcus fascians in Sand Column (Rhodococcus fascians를 이용한 모래 컬럼내 디젤유 분해)

  • Moon, Jun-Hyung;Koo, Ja-Ryong;Yun, Hyun-Shik
    • KSBB Journal
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Contamination of soils, groundwater, air and marine environment with hazardous and toxic chemicals is major side effect by the industrialization. Bioremediation, the application of microorganism or microbial processes to degrade environmental contaminant, is one of the new environmental technologies. Because of low water solubility and volatility of diesel, bioremediation is more efficient than physical and chemical methods. The purpose of this study is biodegradation of diesel in sand by using Rhodococcus fascians, a microorganism isolated from petroleum contaminated soil. This study was performed in the column containing sand obtained from sea sides. Changes in biodegradability of diesel with various flow rates, inoculum sizes, diesel concentrations, and pH were investigated in sand column. The optimal condition for biodegradation of diesel by R. fascians in sand column system was initial pH 8 and air flow rate of 30 mL/min. Higher diesel degradation was achieved at larger inoculum size and the diesel degradation by R. fascians was not inhibited by diesel concentration up to 5%.