Browse > Article
http://dx.doi.org/10.33961/jecst.2022.00045

Boosting Power Generation by Sediment Microbial Fuel Cell in Oil-Contaminated Sediment Amended with Gasoline/Kerosene  

Aleman-Gama, Elizabeth (Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos)
Cornejo-Martell, Alan J. (Instituto de Biotecnologia, UNAM)
Kamaraj, Sathish Kumar (Instituto Tecnologico El Llano (ITEL)/Tecnologico Nacional de Mexico (TecNM), Laboratorio de Cultivos de Tejidos Vegetales)
Juarez, Katy (Instituto de Biotecnologia, UNAM)
Silva-Martinez, Susana (Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos)
Alvarez-Gallegos, Alberto (Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.2, 2022 , pp. 308-320 More about this Journal
Abstract
The high internal resistance (Rint) that develops across the sediment microbial fuel cells (SMFC) limits their power production (~4/10 mW m-2) that can be recovered from an initial oil-contaminated sediment (OCS). In the anolyte, Rint is related to poor biodegradation activity, quality and quantity of contaminant content in the sediment and anode material. While on the catholyte, Rint depends on the properties of the catholyte, the oxygen reduction reaction (ORR), and the cathode material. In this work, the main factors limiting the power output of the SMFC have been minimized. The power output of the SMFC was increased (47 times from its initial value, ~4 mW m-2) minimizing the SMFC Rint (28 times from its initial value, 5000 ohms), following the main modifications. Anolyte: the initial OCS was amended with several amounts of gasoline and kerosene. The best anaerobic microbial activity of indigenous populations was better adapted (without more culture media) to 3 g of kerosene. Catholyte: ORR was catalyzed in birnessite/carbon fabric (CF)-cathode at pH 2, 0.8M Na2SO4. At the class level, the main microbial groups (Gammaproteobacteria, Coriobacteriia, Actinobacteria, Alphaproteobacteria) with electroactive members were found at C-anode and were associated with the high-power densities obtained. Gasoline is more difficult to biodegrade than kerosene. However, in both cases, SMFC biodegradation activity and power output are increased when ORR is performed on birnessite/CF in 0.8 M Na2SO4 at pH 2. The work discussed here can focus on bioremediation (in heavy OCS) or energy production in future work.
Keywords
Birnessite Catalyst; Gammaproteobacteria; Kerosene; Oil-Contaminated Sediments; Sediment Microbial Fuel Cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Wang, D. Wang, Z. Yu, X. Dong, S. Liu, H. Cui, and B. Sun, Environ. Sci. Process. Impacts, 2021, 23(1), 9-27.   DOI
2 M. Kumar, N. S. Bolan, S. A. Hoang, A. D. Sawarkar, T. Jasemizad, B. Gao, S. Keerthanan, L. P. Padhye, L. Singh, S. Kumar, M. Vithanage, Y. Li, M. Zhang, M. B. Kirkham, A. Vinu, and J. Rinklebe, J. Hazard. Mater., 2021, 420, 126534.   DOI
3 S. Son, B. Koo, H. Chai, H. V. H. Tran, S. Pandit, and S. P. Jung, J. Water Process Eng., 2021, 40, 101844.   DOI
4 Y. V. Nancharaiah, S. V. Mohan, and P. N. L. Lens, Removal and Recovery of Metals and Nutrients from Wastewater Using Bioelectrochemical Systems, 2019, 693-720.
5 X. Li, R. Zheng, X. Zhang, Z. Liu, R. Zhu, X. Zhang, and D. Gao, J. Environ. Manage., 2019, 235, 70-76.   DOI
6 B. Yu, J. Tian, and L. Feng, J. Hazard. Mater., 2017, 336, 110-118.   DOI
7 Z. Guo, J. J. Richardson, B. Kong, and K. Liang, Sci. Adv., 2020, 6, 1-17.
8 S. P. Jung, and S. Pandit, Important Factors Influencing Microbial Fuel Cell Performance, Microbial electrochemical technology, Elsevier, 2019, 377-406.
9 S. Kerzenmacher, Engineering of Microbial Electrodes, Bioelectrosynthesis, Springer, 2017, 167, 135-180.
10 K. Y. Kim, W. Yang, and B. E. Logan, Water Res., 2015, 80, 41-46.   DOI
11 X. Guo, Y. Zhan, C. Chen, B. Cai, Y. Wang, and S. Guo, Renew. Energy, 2016, 87, 437-444.   DOI
12 G. C. Gil, I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim, Biosens. Bioelectron., 2003, 8, 327-334.
13 A. Kundu, J. N. Sahu, G. Redzwan, and M. A. Hashim, Int. J. Hydrog. Energy, 2013, 38, 1745-1757.   DOI
14 Y. Jia, D. Zhang, H. You, W. Li, and K. Jiang, J. Nanoparticle Res., 2019, 21(3), 1-10.   DOI
15 A. K. Haritash, and C. P. Kaushik, J. Hazard. Mater., 2009, 169, 1-15.   DOI
16 Y. Hamidi, S. A. Ataei, and A. Sarrafi, J. Chem. Technol. Biotechnol., 2021, 96(5), 1302-1307.   DOI
17 L. Lawniczak, M. Wozniak-Karczewska, A. P. Loibner, H. J. Heipieper, and L. Chrzanowski, Molecules, 2020, 25(4), 856.   DOI
18 B. M. Coppotelli, A. Ibarrolaza, M. T. Del Panno, and I. S. Morelli, Microb. Ecol., 2008, 55, 173-183.   DOI
19 P. Logeshwaran, M. Megharaj, S. Chadalavada, M. Bowman, and R. Naidu, Environ. Technol. Innov., 2018, 10, 175-193.   DOI
20 V. G. Grishchenkov, R. T. Townsend, T. J. McDonald, R. L. Autenrieth, J. S. Bonner, and A. M. Boronin, Process Biochem., 2000, 35, 889-896.   DOI
21 Y. Huang, H. Pan, Q. Wang, Y. Ge, W. Liu, and P. Christie, Chemosphere., 2019, 224, 265-271.   DOI
22 J. Prasad, and R. K. Tripathi, J. Power Sources, 2020, 450, 227721.   DOI
23 B. E. Logan, Chaper 4-Power Generation, Microbial Fuel Cells, John Wiley & Sons, Inc., 2008, 44-60.
24 F. Harnisch, and U. Schroder, Chem. Soc. Rev., 2010, 39, 4433-4448.   DOI
25 M. Zahid, N. Savla, S. Pandit, V. K. Thakur, S. P. Jung, P. K. Gupta, R. Prasad, and E. Marsili, Desalination., 2022, 521, 115381.   DOI
26 M. Quraishi, K. Wani, S. Pandit, P. K. Gupta, A. K. Rai, D. Lahiri, D. A. Jadhav, R. R. Ray, S. P. Jung, V. K. Thakur, and R. Prasad, Fermentation., 2021, 7(291), 1-37.
27 C. K. Algar, A. Howard, C. Ward, and G. Wanger, Sci. Rep., 2020, 10, 13087.   DOI
28 A. A. Pawar, A. Karthic, S. Lee, S. Pandit, and S. P. Jung, Environ. Eng. Res., 2022, 27(1), 200484.
29 C. E. Reimers, L. M. Tender, S. Fertig, and W. Wang, Environ. Sci. Technol., 2001, 35, 192-195.   DOI
30 T. Nam, S. Son, E. Kim, H. V. H. Tran, B. Koo, H. Chai, J. Kim, S. Pandit, A. Gurung, S. E. Oh, E. J. Kim, Y. Choi, and S. P. Jung, Environ. Eng. Res., 2018, 23, 383-389.   DOI
31 M. Sherafatmand, and H. Y. Ng, Bioresour. Technol., 2015, 195, 122-130.   DOI
32 Y. Fan, E. Sharbrough, and H. Liu, Environ. Sci. Technol., 2008, 42, 8101-8107.   DOI
33 G. Mohanakrishna, I. M. Abu-Reesh, S. Kondaveeti, R. I. Al-Raoush, and Z. He, Bioresour. Technol., 2018, 253, 16-21.   DOI
34 M. F. Umar, M. Rafatullah, S. Z. Abbas, M. N. Mohamad Ibrahim, and N. Ismail, Int. J. Environ. Res. Public Health, 2021, 18, 3811.   DOI
35 S. Chen, S. A. Patil, R. K. Brown, and U. Schroder, Appl. Energy, 2019, 15, 233-234.   DOI
36 Q. Du, J. An, J. Li, L. Zhou, N. Li, and X. Wang, J. Power Sources, 2017, 343, 477-482.   DOI
37 H. Rismani-Yazdi, S. M. Carver, A. D. Christy, and O. H. Tuovinen, J. Power Sources, 2008, 180, 683-694.   DOI
38 C. Fuentes-Albarran, A. Del Razo, K. Juarez, and A. Alvarez-Gallegos, Sol. Energy, 2012, 86, 1099-1107.   DOI
39 S. W. Hong, I. S. Chang, Y. S. Choi, and T. H. Chung, Bioresour. Technol., 2009, 100, 3029-3035.   DOI
40 S. P. Jung, E. Kim, and B. Koo, Chemosphere, 2018, 209, 542-550.   DOI
41 S. J. Varjani, D. P. Rana, A. K. Jain, S. Bateja, and V. N. Upasani, Int. Biodeterior. Biodegrad., 2015, 103, 116-124.   DOI
42 D. R. Bond, D. E. Holmes, L. M. Tender, and D. R. Lovley, Science, 2002, 295, 483-485.   DOI
43 H. Nolvak, N. P. Dang, M. Truu, A. Peeb, K. Tiirik, M. O'Sadnick, and J. Truu, Microorganisms, 2021, 9(12), 2425.   DOI
44 S. Jung, Int. J. Electrochem. Sci., 2012, 7, 1109-11100.   DOI
45 S. Oh, B. Min, and B. E. Logan, Environ. Sci. Technol., 2004, 38, 4900-4904.   DOI
46 S. Jung, and J. M. Regan, Appl. Environ. Microbiol., 2011, 77, 564-571.   DOI
47 M. H. in 't Zandt, N. Kip, J. Frank, S. Jansen, J. A. van Veen, M. S. M. Jetten, and C. U. Welte, Appl. Environ. Microbiol., 2019, 85(20), e01369-19.
48 T. Yamashita, and H. Yokoyama, Biotechnol. Biofuels, 2018, 11, 39.   DOI
49 H. Itoh, S. Ishii, Y. Shiratori, K. Oshima, S. Otsuka, M. Hattori, and K. Senoo, Microbes Environ., 2013, 28(3), 370-380.   DOI
50 W. Niyom, D. Komolyothin, and B. B. Suwannasilp, Eng. J., 2018, 22(4), 23-37.   DOI
51 A. Angelov, S. Bratkova, and A. Loukanov, Energy Convers. Manag., 2013, 67, 283-286.   DOI
52 P. A. Vieira, R. B. Vieira, S. Faria, E. J. Ribeiro, and V. L. Cardoso, J. Hazard. Mater., 2009, 168, 1366-1372.   DOI
53 S. Min, and Y. Kim, Minerals, 2020, 10(10), 884.   DOI
54 S. B. Ma, K. Y. Ahn, E. S. Lee, K. H. Oh, and K. B. Kim, Carbon, 2007, 45, 375-382.   DOI
55 E. Bolyen, J. R. Rideout, M. R. Dillon, N. A. Bokulich, C. C. Abnet, ... and J. G. Caporaso, Nat. Biotechnol., 2019, 37, 852-857.   DOI
56 R. Bartha, Microb. Ecol., 1986, 12, 155-172.   DOI
57 C. Muangchinda, R. Pansri, W. Wongwongsee, and O. Pinyakong, J. Appl. Microbiol., 2013, 114, 1311-1324.   DOI
58 S. E. Oh, and B. E. Logan, Appl. Microbiol. Biotechnol., 2006, 70, 162-169.   DOI
59 H. Guo, S. Xie, H. Deng, X. Geng, P. Wang, C. Huang, and S. Tang, Environ. Prog. Sustain. Energy, 2020, 39(5), e13409.   DOI
60 S. J. Dunaj, J. J. Vallino, M. E. Hines, M. Gay, C. Kobyljanec, and J. N. Rooney-Varga, Environ. Sci. Technol., 2012, 46, 1914-1922.   DOI
61 Wiesener K, and Ohms D. Electrode kinetics and electrocatalysis of hydrogen and oxygen elecytrode reactions, 1990, 63-103.
62 Q. Zhao, R. Li, M. Ji, and Z. J. Ren, Bioresour. Technol., 2016, 220, 549-556.   DOI
63 G. Guo, F. Tian, K. Ding, L. Wang, T. Liu, and F. Yang, Int. Biodeterior. Biodegrad., 2017, 123, 56-62.   DOI
64 B. E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, Environ. Sci. Technol., 2006, 40, 5181-5192.   DOI
65 D. T. Nguyen, and K. Taguchi, Effective Cathode Catalysts for O2 Reduction Reactions, Bioelectrochemical Systems, Springer, 2020, 169-187.
66 N. Savla, S. Khilari, S. Pandit, and S. P. Jung, Effective Cathode Catalysts for Oxygen Reduction Reactions in Microbial Fuel Cell, Bioelectrochemical Systems, Springer, 2020, 189-210.
67 B. Koo, and S. P. Jung, Chem. Eng. J., 2021, 424, 130388.   DOI
68 P. Dange, N. Savla, S. Pandit, R. Bobba, S. P. Jung, P. Kumar Gupta, M. Sahni, and R. Prasad, J. Renew. Mater., 2022, 10, 665-697.   DOI
69 B. Koo, S. M. Lee, S. E. Oh, E. J. Kim, Y. Hwang, D. Seo, J. Y. Kim, Y. H. Kahng, Y. W. Lee, S. Y. Chung, S. J. Kim, J. H. Park, and S. P. Jung, Electrochim. Acta., 2019, 297, 613-622.   DOI
70 A. Mohanty, D. P. Jaihindh, Y. P. Fu, S. P. Senanayak, L. S. Mende, and A. Ramadoss, J. Power Sources, 2021, 488, 229444.   DOI
71 N. Wagner, J. Appl. Electrochem., 2002, 32, 859-863.   DOI
72 U. Karra, G. Huang, R. Umaz, C. Tenaglier, L. Wang, and B. Li, Bioresour. Technol., 2013, 144, 477-484.   DOI
73 Y. L. Cao, H. X. Yang, X. P. Ai, and L. F. Xiao, J. Electroanal. Chem., 2003, 557, 127-134.   DOI
74 S.G.A. Flimban, I.M.I. Ismail, T. Kim, and S.E. Oh, Energies., 2019, 12, 1-20.   DOI
75 H. Z. Hamdan, D. A. Salam, A. R. Hari, L. Semerjian, and P. Saikaly, Sci. Total Environ., 2017, 575, 1453-1416.   DOI
76 R. Rudra, V. Kumar, A. Nandy, P. P. Kundu, Performances of Separator and Membraneless Microbial Fuel Cell, 2018, 125-140.
77 H. Guo, S. Tang, S. Xie, P. Wang, C. Huang, X. Geng, X. Jia, H. Huo, X. Li, J. Zhang, Z. Zhang, and J. Fang, Sci. Rep., 2020, 10, 1-10.   DOI
78 G. Palanisamy, H. Y. Jung, T. Sadhasivam, M. D. Kurkuri, S. C. Kim, and S. H. Roh, J. Clean. Prod., 2019, 221, 598-621.   DOI
79 A. Gurung, J. Kim, S. Jung, B. H. Jeon, J. E. Yang, and S. E. Oh, Biotechnol. Lett., 2012, 34, 1833-1839.   DOI
80 A. K. Worku, D. W. Ayele, and N. G. Habtu, SN Appl. Sci., 2021, 3, 764.   DOI
81 K. Michelson, R. E. Alcalde, R. A. Sanford, A. J. Valocchi, and C. J. Werth, Environ. Sci. Technol., 2019, 53, 3480-3487.   DOI
82 C. Fuentes-Albarran, K. Juarez, S. Gamboa, A. Tirado, and A. Alvarez-Gallegos, J. Chem. Technol. Biotechnol., 2020, 95, 3169-3178.   DOI
83 E. Aleman-Gama, A. J. Cornejo-Martell, A. Ortega-Martinez, S. K. Kamaraj, K. Juarez, S. Silva-Martinez, and A. Alvarez-Gallegos, J. Electroanal. Chem., 2021, 894, 115365.   DOI
84 H. Liu and B. Logan, ACS Natl. Meet. B. Abstr., 2004, 228, 4040-4046.
85 H. V. H. Tran, E. Kim, and S. P. Jung, J. Ind. Eng. Chem., 2022, 106, 269-278.   DOI
86 N. Das, and P. Chandran, Biotechnol. Res. Int., 2011, 2011, 941810.   DOI
87 T. K. Sajana, M. M. Ghangrekar, and A. Mitra, Bioresour. Technol., 2014, 155, 84-90.   DOI
88 S. Jung, M. M. Mench, and J. M. Regan, Environ. Sci. Technol., 2011, 45, 9069-9074.   DOI
89 R. Bartha, and R. M. Atlas, Adv. Appl. Microbiol., 1977, 22, 225-266.   DOI
90 D. Massias, V. Grossi, and J. C. Bertrand, Comptes Rendus - Geosci., 2003, 335, 435-439.   DOI
91 K. Venkidusamy, M. Megharaj, M. Marzorati, R. Lockington, and R. Naidu, Sci. Total Environ., 2016, 539, 61-69.   DOI
92 E. I. Solomon, and S. S. Stahl, Chem. Rev., 2018, 118, 2299-2301.   DOI
93 P. Clauwaert, P. Aelterman, T. H. Pham, L. De Schamphelaire, M. Carballa, K. Rabaey, and W. Verstraete, Appl. Microbiol. Biotechnol, 2008, 79, 901-913.   DOI
94 B. Liu, A. Weinstein, M. Kolln, C. Garrett, L. Wang, A. Bagtzoglou, U. Karra, Y. Li, and B. Li, J. Power Sources, 2015, 286, 210-216.   DOI