• Title/Summary/Keyword: microbial community analysis

Search Result 413, Processing Time 0.027 seconds

Analysis of Microbial Communities of Salted Cabbage and Kimchi according to Cultivation Areas (재배지역에 따른 절임배추 및 김치의 미생물 군집 분석)

  • Chang Eun Kim;Soo Hyun Kim;Min Seo Jung;Seung Lim Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.3
    • /
    • pp.304-313
    • /
    • 2024
  • In this study, the microbial distribution and diversity of kimchi manufactured in the same method as salted cabbage manufactured from Pyeongchang, Andong, and Haenam cabbage according to the storage period were compared. Among Pyeongchang, Andong, and Haenam salted cabbages, the Haenam salted cabbage microbial community showed the highest diversity on the 1st day of storage. As the storage period of salted cabbage increased, the alpha diversity value increased, the proportion of cyanobacteria decreased, and bacteria derived from sea salt and water increased. Principal coordinates analysis(PCoA) and unweighted pair group method with arithmetic mean(UPGMA) trees showed that Andong salted cabbage on the 5th day of storage had a microbial community close to salted cabbage on the 10th day of storage. At the species level, Sinocapsa zengkensis was 78.65%, 90.64%, and 63.44%, respectively, in Pyeongchang, Andong, and Haenam salted cabbages on the 1st day of storage. Marinomonas primoryensis was showed in Pyeongchang, Andong, and Haenam salted cabbage on the 5th day of storage at 24.39%, 26.60%, and 21.75%, respectively, and at 42.17%, 31.43%, and 45.21%, respectively, on the 10th day of storage. Kimchi made from Pyeongchang, Andong, and Haenam salted cabbages showed Janthinobacterium lividum at 30.47%, 29.60%, and 25.97%, respectively. In addition, Leuconostoc spp. involved in fermentation were showed from the 5th day of storage, but Andong salted cabbage on the 10th day of storage was not showed. These results show to be due to differences in soil, climate, and cultivation methods of cabbage.

Comparative Microbiome Analysis of and Microbial Biomarker Discovery in Two Different Fermented Soy Products, Doenjang and Ganjang, Using Next-generation Sequencing (차세대 염기서열 분석법을 이용한 된장과 간장의 미생물 분포 및 바이오마커 분석)

  • Ha, Gwangsu;Jeong, Ho Jin;Noh, Yunjeong;Kim, JinWon;Jeong, Su-Ji;Jeong, Do-Youn;Yan, Hee-Jong
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.803-811
    • /
    • 2022
  • Despite the importance of traditional Korean fermented foods, little is known about the microbial communities and diversity of fermented soy products. To gain insight into the unexplored microbial communities of both Doenjang (DJ) and Ganjang (GJ) that may contribute to the fermentation in Korean traditional foods, we carried out next-generation sequencing (NGS) based on the V3-V4 region of 16S rDNA gene analysis. The alpha diversity analysis results revealed that both the Shannon and Simpson diversity indices were significantly different between the two groups, whereas the richness indices, including ACE, CHAO, and Jackknife, were not significant. Firmicutes were the most dominant phylum in both groups, but several taxa were found to be more abundant in DJ than in GJ. The proportions of Bacillus, Kroppenstedtia, Clostridium, and Pseudomonas and most halophiles and halotolerant bacteria, such as Tetragenococcus, Chromohalobacter, Lentibacillus, and Psychrobacter, were lower in DJ than in GJ. Linear discriminant effect size (LEfSe) analysis was carried out to discover discriminative functional biomarkers. Biomarker discovery results showed that Bacillus and Tetragenococcus were identified as the most important features for the classification of subjects to DJ and GJ. Paired-permutational multivariate analysis of variance (PERMANOVA) further revealed that the bacterial community structure between the two groups was statistically different (p=0.001).

Characterization of the microbial communities along the gastrointestinal tract of sheep by 454 pyrosequencing analysis

  • Wang, Jin;Fan, Huan;Han, Ye;Zhao, Jinzhao;Zhou, Zhijiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.100-110
    • /
    • 2017
  • Objective: The gastrointestinal tract of sheep contain complex microbial communities that influence numerous aspects of the sheep's health and development. The objective of this study was to analyze the composition and diversity of the microbiota in the gastrointestinal tract sections (rumen, reticulum, omasum, abomasum, duodenum, jejunum, ileum, cecum, colon, and rectum) of sheep. Methods: This analysis was performed by 454 pyrosequencing using the V3-V6 region of the 16S rRNA genes. Samples were collected from five healthy, small tailed Han sheep aged 10 months, obtained at market. The bacterial composition of sheep gastrointestinal microbiota was investigated at the phylum, class, order, family, genus, and species levels. Results: The dominant bacterial phyla in the entire gastrointestinal sections were Firmicutes, Bacteroidetes, and Proteobacteria. In the stomach, the three most dominant genera in the sheep were Prevotella, unclassified Lachnospiraceae, and Butyrivibrio. In the small intestine, the three most dominant genera in the sheep were Escherichia, unclassified Lachnospiraceae, and Ruminococcus. In the large intestine, the three most dominant genera in the sheep were Ruminococcus, unclassified Ruminococcaceae, and Prevotella. R. flavefaciens, B. fibrisolvens, and S. ruminantium were three most dominant species in the sheep gastrointestinal tract. Principal Coordinates Analysis showed that the microbial communities from each gastrointestinal section could be separated into three groups according to similarity of community composition: stomach (rumen, reticulum, omasum, and abomasum), small intestine (duodenum, jejunum, and ileum), and large intestine (cecum, colon, and rectum). Conclusion: This is the first study to characterize the entire gastrointestinal microbiota in sheep by use of 16S rRNA gene amplicon pyrosequencing, expanding our knowledge of the gastrointestinal bacterial community of sheep.

Effects of Carbohydrate, Protein and Lipid Content of Substrate on Hydrogen Production and Microbial Communities (탄수화물, 단백질, 지방 함량에 따른 혐기성 수소 발효시 부산물 및 미생물 군집 특성 평가)

  • LEE, CHAE-YOUNG;HAN, SUN-KEE
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.5
    • /
    • pp.440-446
    • /
    • 2017
  • This study was aimed at evaluating the effects of carbohydrate, protein and lipid content of substrate on hydrogen yields and microbial communities. The hydrogen yields were linearly correlated to carbohydrate content of substrates while others (content of proteins and lipids) did not make a significant contribution. The chemical composition of substrates produced effects on the final products of anaerobic hydrogen fermentation. Acetate and butyrate were the main fermentation products, with their concentration proving to correlate with carbohydrate and protein content of substrates. The result of microbial community analysis revealed that the relative abundances of Clostridium butyricum increased and Clostridium perfringens decreased as the carbohydrate content increased.

Effectiveness of external agents in polluted sedimentary area

  • Alam, Md. Mahabub;Haque, Md. Niamul;Cho, Daechul;Kwon, Sung-Hyun
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.52-57
    • /
    • 2016
  • Sediment is a useful natural source but deteriorated continually by anthropogenic and industrial sources. Therefore, it is imperative to search a suitable method for improving or restoring sediment quality. Sediment has been tested to identify the effects of some external agents on a polluted area for 28 days. Chemical analysis and total viable counts (TVC) test have been conducted for 4 days interval to assess their performance. The analyses of chemical oxygen demand (COD), acid volatile sulfide (AVS), total phosphorous (T-P), total nitrogen (T-N) indicate that the chemical agents was more efficient to improve sediment quality whereas the microbial agent was more efficient for nutrient releasing from sediment. Oxygen releasing property of the chemical agent was thought to be providing with more congenial environment for the higher growth of the bacterial community than the direct application of microbial agents.

Metabolic Fingerprinting of Food Wastewater Treatment System (식품폐수 처리 단계별 미생물 대사지문)

  • Yoo, Ki-Hwan;Lee, Sang-Hyeon;Lee, Dong-Geun
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.4
    • /
    • pp.327-332
    • /
    • 2008
  • To determine structure and activities of microbial communities in a food wastewater treatment system, biofilm of RABC (rotating activated Bacillus contactor) and samples of aeration tanks were analyzed. Heterotrophic bacterial concentrations were similar between biofilm and stage 1 aeration tank and decreased 2-log at stage 3 aeration tank as dissolved oxygen decreased, however portions of Bacillus groups were increased at stage 3 aeration tank. It was revealed by quantitative and qualitative analysis of metabolic fingerprinting patterns of Biolog GN2 plate that RABC represented much higher activities and a different microbial community structure compared to aeration tanks. Metabolic fingerprinting showed the carbon sources that isolated Bacillus groups could or could not use, were used similarly meaning that not only Bacillus groups but also other microbial groups would contribute to the treatment of wastewater.

Application of rDNA-PCR Amplification and DGGE Fingerprinting for Detection of Microbial Diversity in a Malaysian Crude Oil

  • Liew, Pauline Woan Ying;Jong, Bor Chyan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.815-820
    • /
    • 2008
  • Two culture-independent methods, namely ribosomal DNA libraries and denaturing gradient gel electrophoresis (DGGE), were adopted to examine the microbial community of a Malaysian light crude oil. In this study, both 16S and 18S rDNAs were PCR-amplified from bulk DNA of crude oil samples, cloned, and sequenced. Analyses of restriction fragment length polymorphism (RFLP) and phylogenetics clustered the 16S and 18S rDNA sequences into seven and six groups, respectively. The ribosomal DNA sequences obtained showed sequence similarity between 90 to 100% to those available in the GenBank database. The closest relatives documented for the 16S rDNAs include member species of Thermoincola and Rhodopseudomonas, whereas the closest fungal relatives include Acremonium, Ceriporiopsis, Xeromyces, Lecythophora, and Candida. Others were affiliated to uncultured bacteria and uncultured ascomycete. The 16S rDNA library demonstrated predomination by a single uncultured bacterial type by >80% relative abundance. The predomination was confirmed by DGGE analysis.

Analysis and Quantification of Ammonia-Oxidizing Bacteria Community with amoA Gene in Sewage Treatment Plants

  • Hong, Sun Hwa;Jeong, Hyun Duck;Jung, Bongjin;Lee, Eun Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1193-1201
    • /
    • 2012
  • The analysis and quantification of ammonia-oxidizing bacteria (AOB) is crucial, as they initiate the biological removal of ammonia-nitrogen from sewage. Previous methods for analyzing the microbial community structure, which involve the plating of samples or culture media over agar plates, have been inadequate because many microorganisms found in a sewage plant are unculturable. In this study, to exclusively detect AOB, the analysis was carried out via denaturing gradient gel electrophoresis using a primer specific to the amoA gene, which is one of the functional genes known as ammonia monooxygenase. An AOB consortium (S1 sample) that could oxidize an unprecedented 100% of ammonia in 24 h was obtained from sewage sludge. In addition, real-time PCR was used to quantify the AOB. Results of the microbial community analysis in terms of carbon utilization ability of samples showed that the aeration tank water sample (S2), influent water sample (S3), and effluent water sample (S4) used all the 31 substrates considered, whereas the AOB consortium (S1) used only Tween 80, D-galacturonic acid, itaconic acid, D-malic acid, and $_L$-serine after 192 h. The largest concentration of AOB was detected in S1 ($7.6{\times}10^6copies/{\mu}l$), followed by S2 ($3.2{\times}10^6copies/{\mu}l$), S4 ($2.8{\times}10^6copies/{\mu}l$), and S3 ($2.4{\times}10^6copies/{\mu}l$).