DOI QR코드

DOI QR Code

Analysis of Microbial Communities of Salted Cabbage and Kimchi according to Cultivation Areas

재배지역에 따른 절임배추 및 김치의 미생물 군집 분석

  • Chang Eun Kim (Guwoon Food & Research Institute) ;
  • Soo Hyun Kim (Guwoon Food & Research Institute) ;
  • Min Seo Jung (Pyeongchang Kkotsooni Co., Ltd.) ;
  • Seung Lim Lee (Department of Food and Nutrition)
  • 김창은 (구운식품연구소) ;
  • 김수현 (구운식품연구소) ;
  • 정민서 (평창꽃순이(주)농업회사법인) ;
  • 이승림 (상지대학교 식품영양학과)
  • Received : 2024.06.05
  • Accepted : 2024.08.08
  • Published : 2024.09.28

Abstract

In this study, the microbial distribution and diversity of kimchi manufactured in the same method as salted cabbage manufactured from Pyeongchang, Andong, and Haenam cabbage according to the storage period were compared. Among Pyeongchang, Andong, and Haenam salted cabbages, the Haenam salted cabbage microbial community showed the highest diversity on the 1st day of storage. As the storage period of salted cabbage increased, the alpha diversity value increased, the proportion of cyanobacteria decreased, and bacteria derived from sea salt and water increased. Principal coordinates analysis(PCoA) and unweighted pair group method with arithmetic mean(UPGMA) trees showed that Andong salted cabbage on the 5th day of storage had a microbial community close to salted cabbage on the 10th day of storage. At the species level, Sinocapsa zengkensis was 78.65%, 90.64%, and 63.44%, respectively, in Pyeongchang, Andong, and Haenam salted cabbages on the 1st day of storage. Marinomonas primoryensis was showed in Pyeongchang, Andong, and Haenam salted cabbage on the 5th day of storage at 24.39%, 26.60%, and 21.75%, respectively, and at 42.17%, 31.43%, and 45.21%, respectively, on the 10th day of storage. Kimchi made from Pyeongchang, Andong, and Haenam salted cabbages showed Janthinobacterium lividum at 30.47%, 29.60%, and 25.97%, respectively. In addition, Leuconostoc spp. involved in fermentation were showed from the 5th day of storage, but Andong salted cabbage on the 10th day of storage was not showed. These results show to be due to differences in soil, climate, and cultivation methods of cabbage.

강원도 평창, 경상북도 안동 및 전라남도 해남에서 각각 재배된 배추를 수집하여 동일한 조건에서 절여 저장기간에 따른 미생물 군집의 변화와 동일한 양념을 사용하여 제조한 김치의 미생물 군집을 비교하였다. 저장 1일차 평창, 안동 및 해남 절임배추 중 해남 절임배추 미생물 군집의 다양성이 가장 높았고 저장 5일 및 10일차 절임배추에서 공통적으로 유사한 결과를 나타냈다. 저장 1일차 절임배추로 제조한 김치는 절임배추와 비교하여 미생물 군집의 다양성이 증가하였다. 저장 1일차 절임배추는 육상 구균성 남세균인 S. zengkensis, 저장 5일 및 10일차 절임배추는 해빙에서 분리된 M. primoryensis가 우점균임을 확인하였다. 저장 5일차 평창, 안동 및 해남 절임배추에서 Leuconostoc spp.가 각각 0.82%, 0.13% 및 0.28%, 저장 10일차 평창 및 해남 절임배추에서 각각 2.39% 및 0.93%의 Leuconostoc spp.가 검출되었다. 저장 1일차 평창, 안동 및 해남 절임배추로 제조한 김치는 항박테리아, 항바이러스 및 항진균의 특성을 나타내는 J. lividum이 우점종임을 확인하였으며, Leuconostoc spp. 등 발효과정 및 저온저장 김치에서 발견되는 미생물들의 생육이 이루어지고 있음을 확인하였다.

Keywords

Acknowledgement

This study was conducted in 2023 with support for technical support projects from the Korea SMEs and Startups Agency.

References

  1. Lee CH, Ahn BS. 1995. Literature review on kimchi, korean fermented vegetable foods-I. history of kimchi making. J. Korean Soc. Food Cult. 10: 311-319. 
  2. Choi SK, Hwang SY, Jo JS. 1997. Standardization of kimchi and related products (3). J. Korean Soc. Food Cult. 12: 531-548. 
  3. Kim EM, Kim YM, Jo JH, Woo SJ. 1998. A study on the housewives recognition and preference of seafoods and add kimchi. J. Korean Soc. Food Cult. 13: 19-26. 
  4. Wi SH, Lee HJ, Yu IH, Jang YA, Yeo KH, An SW, et al. 2020. Analysis of effect of environment on growth and yield of autumn kimchi cabbage in Jeonnam province using big data. Korean J. Agric. For. Meteor. 22: 183-193. 
  5. Eum HL, Kim BS, Yang YJ, Hong SJ. 2013. Quality evaluation and optimization of storage temperature with eight cultivars of kimchi cabbage produced in summer at highland areas. Korean J. Hort. Sci. Technol. 31: 211-218. 
  6. Kosis. 2023. Crop production survey. Available from https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0028&conn_path=I2. Accessed July 17, 2024. 
  7. Jeong JW, Park SS, Lim JH, Park KJ, Kim BK, Sung JM. 2011. Quality characteristics of chinese cabbage with different salting conditions using electrolyzed water. J. Korean Soc. Food. Sci. Nutr. 40: 1743-1749. 
  8. Ku KH, Jeong MC, Chung SK. 2013. Industrialization of salted chinese cabbages and fresh-cut chinese cabbage. Food Sci. Ind. 46: 2-11. 
  9. Yun HH, Lee SY. 2003. Quality characteristics of baechu kimchi salted with recycled wastebrine. Korean J. Soc. Food Cookery Sci. 19: 609-615. 
  10. Kim JS, Jung JY, Cho SK, Kim JE, Kim TJ, Kim BS, et al. 2010. Microbial analysis of baechu-kimchi during automatic production process. Korean J. Food Sci. Technol. 42: 281-286. 
  11. Choi EJ, Jeong MC, Ku KH. 2015. Effect of seasonal cabbage cultivar (Brassica rapa L. ssp. Pekinesis) on the quality characteristics of salted-kimchi cabbages during storage period. Korean J. Food Preserv. 22: 303-313. 
  12. Kim DH, Lee WO, Hong YK, Jeon HJ, Kim KH, Kang H, et al. 2019. Application of beta diversity to analysis the fish community structure in stream. Korean J. Environ. Ecol. 52: 274-283. 
  13. Huang CL, Jian FY, Huang HJ, Chang WC, Wu WL, Hwang CC, et al. 2014. Deciphering mycorrhizal fungi in cultivated phalaenopsis microbiome with next-generation sequencing of multiple barcodes. Fungal Divers. 66: 77-88. 
  14. Callahan BJ, McMurdie PJ, Holmes SP. 2017. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11: 2639-2643. 
  15. Bak GR, Lee JT, Kim YM. 2024. Impact of 8-year soybean crop rotation on soil characteristics in highland kimchi cabbage cultivation. J. Environ. Sci. Int. 33: 27-41. 
  16. Bray JR, Curtis JT. 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27: 325-349. 
  17. Lee JA, Kang YJ, Choi JY, Shun SM, Shin MC. 2022. Comparison of fecal microbiota between birth and weaning of halla horses ssing 16S rRNA gene amplicon sequencing. J. Life Sci. 32: 1005-1012. 
  18. Oren A, Mares J, Rippka R. 2022. Validation of the names Cyanobacterium and Cyanobacterium stanieri, and proposal of Cyanobacteriota phyl. nov. Int. J. Syst. Evol. Microbiol. 72: 005528. 
  19. Lee KH, Kuack HS, Jung JW, Lee EJ, Jeong DM, Kang KY, et al. 2013. Comparison of the quality characteristics between spring cultivars of kimchi cabbage (Brassica rapa L. ssp. pekinensis). Korean J. Food Preserv. 20: 182-190. 
  20. Hong GH, Lee SY, Park ES, Park KY. 2021. Changes in microbial community by salt content in kimchi during fermentation. J. Korean Soc. Food Sci. Nutr. 50: 648-653. 
  21. Lee HS, Chea SY, Lee KE, Cha IT, Kim DU. 2023. A report on five unrecorded bacterial species belonging to the phyla Actinomy-cetota, Bacillota and Pseudomonadota in Korea isolated in 2020. J. Species Res. 12: 1-6. 
  22. Jeon CO, Kim WY, Bae JW, Seong CN, Im WT, Kim SB, et al. 2023. A report of 36 unrecorded bacterial species belonging to the phyla Actinomycetota, Bacillota, Bacteroidota, Deinococcota, and Pseudomonadota isolated in Republic of Korea. J. Species Res. 12: 415-429. 
  23. Kim DH, Hong SH, Kim YT, Ryu SR, Kim HB, Lee JH. 2018. Metagenomic approach to identifying foodborne pathogens on Chinese cabbage. J. Microbiol. Biotechnol. 28: 227-235. 
  24. Oren A, Garrity GM. 2021. Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 71: 005056. 
  25. Kang JS, Chung WH, Nam YD, Kim DY, Seo SM, Lim SI, et al. 2018. Impact of clay minerals on bacterial diversity during the fermentation process of kimchi. Appl. Clay Sci. 154: 64-72. 
  26. Wang Y, Cai F, Jia N, Li R. 2019. Description of a novel coccoid cyanobacterial genus and species Sinocapsa zengkensis gen. nov. sp. nov. (Sinocapsaceae, incertae sedis), with taxonomic notes on genera in Chroococcidiopsidales. Phytotaxa. 409: 146-160. 
  27. Romanenko LA, Uchino M, Mikhailov VV, Zhukova NV, Uchimura T. 2003. Marinomonas primoryensis sp. nov., a novel psychrophile isolated from coastal sea-ice in the sea of Japan. Int. J. Syst. Evol. Microbiol. 53: 829-832. 
  28. Groudieva T, Grote R, Antranikian G. 2003. Psychromonas arctica sp. nov., a novel psychrotolerant, biofilm-forming bacterium isolated from Spitzbergen. Int. J. Syst. Evol. Microbiol. 53: 539-545. 
  29. Woods DF, Kozak IM, O'Gara F. 2020. Microbiome and functional analysis of a traditional food process: isolation of a novel species (Vibrio hibernica) with industrial potential. Front. Microbiol. 11: 647. 
  30. Bjorkroth KJ, Geisen R, Schillinger U, Weiss N, De Vos P, Holzapfel WH, et al. 2000. Characterization of Leuconostoc gasicomitatum sp. nov., associated with spoiled raw tomato-marinated broiler meat strips packaged under modified-atmosphere conditions. Appl. Environ. Microbiol. 66: 3764-3772. 
  31. Kim BJ, Lee HJ, Park SY, Kim JH, Han HU. 2000. Identification and characterization of Leuconostoc gelidum, isolated from kimchi, a fermented cabbage product. J. Microbiol. 38: 132-136. 
  32. Song HY, Cheon SH, Yoo SR, Chung YB, Seo HY. 2016. Changes in quality characteristics of salted Kimchi cabbage and kimchi paste during storage. Korean J. Food Preserv. 23: 459-470. 
  33. Oh WT, Giri SS, Yun S, Kim HJ, Kim SG, Kim SW, et al. 2019. Janthinobacterium lividum as an emerging pathogenic bacterium affecting rainbow trout (Oncorhynchus mykiss) fisheries in Korea. Pathogens. 8: 146. 
  34. Jung MS, Kim SH, Jeon MH, Lee SL. 2023. Physicochemical characteristics and antioxidant activity of kimchi manufactured salted cabbages in different cultivation areas. The Table and Food Coordinate Society of Korea 18: 13-26.