• Title/Summary/Keyword: microbead

Search Result 30, Processing Time 0.025 seconds

Morphology and swelling property of chitosan microapsules and microbeads prepared by W/O emulsion (W/O 에멀젼에 의한 chitosan microcapsule 및 microbead의 morphology와 팽윤성)

  • 하병조;이옥섭
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.21 no.2
    • /
    • pp.49-56
    • /
    • 1995
  • Chitosan microcapsules and microbeads were prepared by W/O emulsion method, and their morphologies were observed through SEM. The microcapsules have skin layer of 8 Um and 250 Um of mean diameter, The swelling test showed higher s welling ability in protic solvents than in aphotic solvents. After containing moth-yl violet in the microcapsules, the release patterns were investigated. The results sho wed that the addition of Iysozyme in pH 5.1 acetate buffer accelerated the re-lease rate. In case of the microbeads, the mean diameter was about 70 Um. The surface of the microbeads showed porous structures. The swelling ability of the beads revealed two times higher than the one of the microcapsules.

  • PDF

Dependence of Crosslinking Temperature on Swelling Behavior of Hyaluronic Acid Porous Microbeads Synthesized by a Modified Spray Method (노즐 낙하법으로 제조한 히알루론산 다공성 마이크로비드의 가교온도에 따른 팽윤특성)

  • Kim, Young-Hun;Lee, In-Kyu;Kim, Jin-Tae;Park, Ju-Hyun;Lee, Deuk Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.518-522
    • /
    • 2012
  • Hyaluronic acid (HA) microbeads were synthesized by dropping 0.5 wt% of sodium hyaluronate dissolved in NaOH into 0.2 vol% of divinyl sulfone dissolved in 2-methyl-1propanol at a speed of 0.005 ml/min. HA microbeads were collected from a divinyl sulfone crosslinker solution stirred at 200 to 400 rpm for 5 h at temperatures from room temperature to $60^{\circ}C$ at intervals of $10^{\circ}C$. The crosslinked microbeads were then cleaned thoroughly using distilled water and ethanol. SEM results revealed that the microbeads were white-colored spheres. The 3-D porous network structure of the microbeads became dense with an increase in the crosslinking temperature; however, no dependence of the crosslinking temperature on the microbead size was detected. The extent of swelling decreased from 970% to 670% with an increase in the crosslinking temperature from room temperature to $60^{\circ}C$, most likely due to the increase in the degree of crosslinking.

Planar Hall Sensor Used for Microbead Detection and Biochip Application

  • Thanh, N.T.;Kim, D.Y.;Kim, C.G.
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.40-44
    • /
    • 2007
  • The Planar Hall effect in a spin valve structure has been applied as a biosensor being capable of detecting $Dynabeads^{(R)}$ M-280. The sensor performance was tested under the application of a DC magnetic field where the output signals were obtained from a nanovoltmeter. The sensor with the pattern size of $50{\times}100{\mu}m^2$ has produced high sensitivity; especially, the real-time profiles by using that sensor revealed significant performance at external applied magnetic field of around 7.0 Oe with the resolution of 0.04 beads per $\mu m^2$. Finally, a successful array including 24 patterns with the single sensor size of $3{\times}3{\mu}m^2$ has shown the uniform and stable signals for single magnetic bead detection. The comparison of this sensor signal with the others has proved feasibility for biosensor application. This, connecting with the advantages of more stable and high signal to noise of PHR sensor's behaviors, can be used to detect the biomolecules and provide a vehicle for detection and study of other molecular interaction.

Alignment of Microbeads Using Spinning Helical Minichannel Cartridge (회전하는 나선형 미니채널 카트리지를 이용한 미세입자 정렬)

  • Kim, Subin;Prasad, Bibin;Kim, Jung Kyung
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.38-45
    • /
    • 2016
  • Separation of particles based on different sizes, detection of pathogenic bacteria and isolation of leukocytes from whole blood are typical applications of spiral or helical microchannels. The present study focuses on developing a CD4+ T-cell counting device for monitoring HIV/AIDS patients with the aid of a helical minichannel used for a sample cartridge. For the experiment, $10{\mu}m$ sized microbeads were used for visualization with a fluorescence imaging system. Alignment of microbeads was investigated in a stationary and spinning sample cartridge filled with glycerol-water mixtures of different densities. The helical minichannel was spun using a DC motor controlled by an Arduino board with a Bluetooth shield. It was found that when the sample cartridge was made stationary, no bead alignment was achieved for a medium with density (0% and 20% glycerol) lower than that of the beads, but when it was spun at 2000-3000 rpm for 1-4 min, an alignment was obtained at the top of the channel facilitating optical detection and enumeration of those microbeads. Since an alignment of microbeads was achieved for a medium with density as that of blood plasma, the same approach can be applied for aligning and counting CD4+ T-lymphocytes in whole blood samples collected from patients.

Motion of Microbeads Propelled by Bacterial Chemotaxis (박테리아의 주화성에 의한 미세입자의 운동)

  • Kim, Dong-Wook;Kim, Young-Won;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.523-529
    • /
    • 2010
  • Recently, several research groups have been investigating the motion of flagellated bacteria, with the aim of examining the feasibility of using bacterial chemotaxis as an efficient power source for microactuators. In this study, microparticle-tracking velocimetry ($\mu$-PTV) is used for investigating the motion of fluorescent microbeads propelled by bacterial chemotaxis. Flagellated bacteria, Serratia marcescens, are spontaneously attached to the surface of the fluorescent polystyrene (PS) microbeads in an aqueous culture. The microbeads thus treated are injected into the test medium, which contains the solidified chemoattractant L-aspartate. With time, the particles slowly move toward the zone in which the L-aspartate concentration is high. This study shows that chemotaxis of flagellated bacteria can be applied as an efficient power source for microactuators.

Microbead based micro total analysis system for Hepatitis C detection (마이크로비드를 이용한 초소형 C형 간염 검출 시스템의 제작)

  • Sim, Tae-Seok;Lee, Bo-Rahm;Lee, Sang-Myung;Kim, Min-Soo;Lee, Yoon-Sik;Kim, Byung-Gee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1629-1630
    • /
    • 2006
  • This paper describes a micro total analysis system ($\mu$ TAS) for detecting and digesting the target protein which includes a bead based temperature controllable microchip and computer based controllers for temperature and valve actuation. We firstly combined the temperature control function with a bead based microchip and realized the on-chip sequential reactions using two kinds of beads. The PEG-grafted bead, on which RNA aptamer was immobilized, was used for capturing and releasing the target protein. The target protein can be chosen by the type of RNA aptamer. In this paper, we used the RNA aptamer of HCV replicase. The trypsin coated bead was used for digesting the released protein prior to the matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI TOF MS). Heat is applied for release of the captured protein binding on the bead, thermal denaturation and trypsin digestion. PDMS microchannel and PDMS micro pneumatic valves were also combined for the small volume liquid handling. The entire procedures for the detection and the digestion of the target protein were successfully carried out on a microchip without any other chemical treatment or off-chip handling using $20\;{\mu}l$ protein mixture within 20 min. We could acquire six matched peaks (7% sequence coverage) of HCV replicase.

  • PDF

Scanning Electron Microscopic Study on the Microplastics in Rinse Off Cosmetics (피부 청결 화장품에 첨가된 미세플라스틱의 주사전자현미경적 연구)

  • Kim, Kyung-Sook;Chang, Byung-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.9
    • /
    • pp.252-257
    • /
    • 2019
  • We investigated the microstructure and morphological characteristics of microplastics added to rinse off cosmetics by scanning electron microscope. The size of the microplastic was in a wide range of sizes, from $250{\mu}m$ to 1.5mm in diameter. The small microplastics were in the shape of elongated particles and the large microplastics were cuboidal. Most cubic microplastics were observed in the form of squares or rectangles. The surface of the cubic microplastic was smoothly observed without protruding portions, but irregularly many gaps were formed. The gap between openings was measured from about $5{\mu}m$ to $20{\mu}m$. It has not been confirmed that these gaps are formed from the surface of the microplastic to the inside there of.

In-situ Patterning of Magnetic Particles in Microfluidic Channels by Forward/Reverse Local Magnet Arrangement (국소 자기장의 순/역 배열을 이용한 미세유체 채널 내에서의 강자성 입자 패턴 형성)

  • Park, Hyoun-Hyang;Lee, Ji Hae;Yoo, Yeong Eun;Kim, Jung-Yup;Chang, Sunghwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.217-223
    • /
    • 2015
  • The patterning of microbead in microfluidics channel is a practical technique for application in bio and medical areas. An approach is described for a direct patterning of magnetically active microbeads in microfluidic devices without inner structure. Local magnet arrangements - flat arrangement and stack arrangement - contacting same poles or opposite poles of magnet were utilized for generating trapping magnetic fields. The arrangement of magnets contacting same poles generated isolated patterns by repelling of magnetic field. The flat arrangement of vertically reverse magnet arrays shaped trapping patterns repelling magnetic field line between same poles. Spatially, the stack compositions of magnet arrangements allow diverse isolated trapped patterns of magnetic particles. Trapped magnetic particles in fluidic channels were stable on the $18m{\ell}/hr$ flow conditions and magnetic force of 1.08 mT in the all experiments. This experimental study suggests the simple and versatile methods to pattern magnetic particles, and has potential of wide application to bio and medical area.

A Research and Application of Polyhydroxyalkanoates in Biosensor Chip (생분해성 고분자, 폴리하이드록시알카노에이트를 이용한 바이오센서 칩 연구와 그 응용)

  • Park, T.J.;Lee, S.Y.
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.371-377
    • /
    • 2007
  • Polyhydroxyalkanoates (PHAs) are a family of microbial polyesters that can be produced by fermentation from renewable resources. PHAs can be used as completely biodegradable plastics or elastomers. In this paper, novel applications of PHAs in biosensor are described. A general platform technology was developed by using the substrate binding domain (SBD) of PHA depolymerase as a fusion partner to immobilize proteins of interest on PHA surface. It could be shown that the proteins fused to the SBD of PHA depolymerase could be specifically immobilized onto PHA film, PHA microbead, and microcontact printed PHA surface. We review the results obtained for monitoring the specific interaction between the SBO and PHA by using enhanced green fluorescent protein, red fluorescent protein, single chain antibody against hepatitis B virus preS2 surface protein and severe acute respiratory syndrome coronavirus surface antigen as model proteins. Thus, this system can be efficiently used for studying protein-protein and possibly protein-biomolecule interactions for various biotechnological applications.

A Study on the Collection and Analysis of Tire and Road Wear Particles(TRWPs) as Fine Dust Generated on the Roadside (도로변에서 발생되는 미세먼지로써 타이어와 도로 마모입자 채집과 분석 연구)

  • Kang, Tae-Woo;Kim, Hyeok-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.293-299
    • /
    • 2022
  • Recently, various stakeholder are interested in microplastic to cause pollution of the marine's ecosystem and effort to conduct study of product's life cycle to reduce pollution of marine's ecosystem. The micorplastic refer to materials of the nano- to micro- sized units and it can be classified into primary and secondary. The primary microplastic mean the manufactured for use in the specific field such as the microbead of the cosmetic or cleanser. also, secondary mean the unintentionally generated during use of the product such as the textile crumb by the doing the laundry. Tire and Road Wear Particles(TRWPs) are also defined as secondary microplastic. Typically, TRWPs are created by friction between the tread compound's rubber of the tire and the surface of the road du ring the driving cars. Most of the generated TRWPs exist on the roadside and some of them were carried to marine by the rainwater. In this study, we perform the quantitative analysis of the TRWPs existed in fine dust at the roadside. So, we collected the dust from the roadside in Chungcheongnam-do's C site with a movement of 1,300 cars per the hour. The collected samples were separated according to size and density. And shape analysis was performed using the Scanning Electron Microscope(SEM). We were possible to discover a lot of TRWPs at the fine dust of the 100 ± 20 ㎛. And we analysis it u sing the Thermo Gravimetric Analysis(TGA) and Gas Chromatography/Mass Spectrometer(GC/MS) for the quantitative components from the tire. As a result, it was confirmed that TRWPs generated from the roadside fine dust were included the 0.21 %, and the tire and road components in the generated TRWPs consisted of the 3:7 ratio.