• 제목/요약/키워드: microarray expression data

검색결과 357건 처리시간 0.031초

Statistical Analysis of Gene Expression Data

  • 박태성
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2001년도 제2회 생물정보 워크샵 (DNA Chip Bioinformatics)
    • /
    • pp.97-115
    • /
    • 2001
  • cDNA microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. Many statistical analysis tools become widely applicable to the analysis of cDNA microarray data. In this talk, we consider a two-way ANOVA model to differentiate genes that have high variability and ones that do not. Using this model, we detect genes that have different gene expression profiles among experimental groups. The two-way ANOVA model is illustrated using cDNA microarrays of 3,800 genes obtained in an experiment to search for changes in gene expression profiles during neuronal differentiation of cortical stem cells.

  • PDF

Effect of Normalization on Detection of Differentially-Expressed Genes with Moderate Effects

  • Cho, Seo-Ae;Lee, Eun-Jee;Kim, Young-Chul;Park, Tae-Sung
    • Genomics & Informatics
    • /
    • 제5권3호
    • /
    • pp.118-123
    • /
    • 2007
  • The current existing literature offers little guidance on how to decide which method to use to analyze one-channel microarray measurements when dealing with large, grouped samples. Most previous methods have focused on two-channel data;therefore they can not be easily applied to one-channel microarray data. Thus, a more reliable method is required to determine an appropriate combination of individual basic processing steps for a given dataset in order to improve the validity of one-channel expression data analysis. We address key issues in evaluating the effectiveness of basic statistical processing steps of microarray data that can affect the final outcome of gene expression analysis without focusingon the intrinsic data underlying biological interpretation.

Transcriptional profiles of rock bream iridovirus (RBIV) using microarray approaches

  • Myung-Hwa, Jung;Jun-Young, Song;Sung-Ju, Jung
    • 한국어병학회지
    • /
    • 제35권2호
    • /
    • pp.141-155
    • /
    • 2022
  • Rock bream iridovirus (RBIV) causes high mortality and economic losses in the rock bream (Oplegnathus fasciatus) aquaculture industry in Korea. Viral open reading frames (ORFs) expression profiling at different RBIV infection stages was investigated using microarray approaches. Rock bream were exposed to the virus and held for 7 days at 23 ℃ before the water temperature was reduced to 17 ℃. Herein, 28% mortality was observed from 24 to 35 days post infection (dpi), after which no mortality was observed until 70 dpi (end of the experiment). A total of 27 ORFs were significantly up- or down-regulated after RBIV infection. In RBIV-infected rock bream, four viral genes were expressed after 2 dpi. Most RBIV ORFs (26 genes, 96.2%) were significantly elevated between 7 and 20 dpi. Among them, 12 ORF (44.4%) transcripts reached their peak expression intensity at 15 dpi, and 14 ORFs (51.8%) were at peak expression intensity at 20 dpi. Expression levels began to decrease after 25 dpi, and 92.6% of ORFs (25 genes) were expressed below 1-fold at 70 dpi. From the microarray data, in addition to the viral infection, viral gene expression profiles were categorized into three infection stages, namely, early (2 dpi), middle (7 to 20 dpi), and recovery (25 and 70 dpi). RBIV ORFs 009R, 023R, 032L, 049L, and 056L were remarkably expressed during RBIV infection. Furthermore, six ORFs (001L, 013R, 052L, 053L, 058L, and 061L) were significantly expressed only at 20 dpi. To verify the cDNA microarray data, we performed quantitative real-time PCR, and the results were similar to that of the microarray. Our results provide novel observations on broader RBIV gene expression at different stages of infection and the development of control strategies against RBIV infection.

Consensus Clustering for Time Course Gene Expression Microarray Data

  • Kim, Seo-Young;Bae, Jong-Sung
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.335-348
    • /
    • 2005
  • The rapid development of microarray technologies enabled the monitoring of expression levels of thousands of genes simultaneously. Recently, the time course gene expression data are often measured to study dynamic biological systems and gene regulatory networks. For the data, biologists are attempting to group genes based on the temporal pattern of their expression levels. We apply the consensus clustering algorithm to a time course gene expression data in order to infer statistically meaningful information from the measurements. We evaluate each of consensus clustering and existing clustering methods with various validation measures. In this paper, we consider hierarchical clustering and Diana of existing methods, and consensus clustering with hierarchical clustering, Diana and mixed hierachical and Diana methods and evaluate their performances on a real micro array data set and two simulated data sets.

Gene Microarray의 기본개념 (Basic Concept of Gene Microarray)

  • 황승용
    • 생물정신의학
    • /
    • 제8권2호
    • /
    • pp.203-207
    • /
    • 2001
  • The genome sequencing project has generated and will continue to generate enormous amounts of sequence data including 5 eukaryotic and about 60 prokaryotic genomes. Given this ever-increasing amounts of sequence information, new strategies are necessary to efficiently pursue the next phase of the genome project-the elucidation of gene expression patterns and gene product function on a whole genome scale. In order to assign functional information to the genome sequence, DNA chip(or gene microarray) technology was developed to efficiently identify the differential expression pattern of independent biological samples. DNA chip provides a new tool for genome expression analysis that may revolutionize many aspects of biotechnology including new drug discovery and disease diagnostics.

  • PDF

Detection of Differentially Expressed Genes by Clustering Genes Using Class-Wise Averaged Data in Microarray Data

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • 제14권3호
    • /
    • pp.687-698
    • /
    • 2007
  • A normal mixture model with which dependence between classes is incorporated is proposed in order to detect differentially expressed genes. Gene clustering approaches suffer from the high dimensional column of microarray expression data matrix which leads to the over-fit problem. Various methods are proposed to solve the problem. In this paper, use of simple averaging data within each class is proposed to overcome the various problems due to high dimensionality when the normal mixture model is fitted. Some experiments through simulated data set and real data set show its availability in actuality.

Feature Selection via Embedded Learning Based on Tangent Space Alignment for Microarray Data

  • Ye, Xiucai;Sakurai, Tetsuya
    • Journal of Computing Science and Engineering
    • /
    • 제11권4호
    • /
    • pp.121-129
    • /
    • 2017
  • Feature selection has been widely established as an efficient technique for microarray data analysis. Feature selection aims to search for the most important feature/gene subset of a given dataset according to its relevance to the current target. Unsupervised feature selection is considered to be challenging due to the lack of label information. In this paper, we propose a novel method for unsupervised feature selection, which incorporates embedded learning and $l_{2,1}-norm$ sparse regression into a framework to select genes in microarray data analysis. Local tangent space alignment is applied during embedded learning to preserve the local data structure. The $l_{2,1}-norm$ sparse regression acts as a constraint to aid in learning the gene weights correlatively, by which the proposed method optimizes for selecting the informative genes which better capture the interesting natural classes of samples. We provide an effective algorithm to solve the optimization problem in our method. Finally, to validate the efficacy of the proposed method, we evaluate the proposed method on real microarray gene expression datasets. The experimental results demonstrate that the proposed method obtains quite promising performance.

시간 경로 마이크로어레이 자료의 군집 분석에 관한 고찰 (A Review of Cluster Analysis for Time Course Microarray Data)

  • 손인석;이재원;김서영
    • 응용통계연구
    • /
    • 제19권1호
    • /
    • pp.13-32
    • /
    • 2006
  • 생물학자들은 시간에 따라 발현 수준이 변화하는 유전자의 군집화를 시도하고 있다. 지금까지는 마이크로어레이 자료의 군집분석에 관한 연구의 경우 군집 방법 자체를 비교하는 연구가 주를 이루었다. 그러나 군집화 이전에 의미있는 변화를 보이는 유전자 선택에 따라 군집화 결과가 달라지기 때문에, 군집 분석에 있어서 유전자 선택 단계도 중요하게 고려되어야 한다. 따라서, 본 논문에서는 시간 경로 마이크로어레이 자료를 군집 분석하는데 있어서 유전자 선택, 군집 방법 선택, 군집평가 방법 선택 등 3가지 요인을 고려한 폭 넓은 비교 연구를 하였다.

UML을 활용한 마이크로어레이 정보시스템의 객체지향분석 (Application of UML (Unified Modeling Language) in Object-oriented Analysis of Microarray Information System)

  • Park, Ji-Yeon;Chung, Hee-Joon;Kim, Ju-Han
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
    • /
    • pp.147-154
    • /
    • 2003
  • Microarray information system is a complex system to manage, analyze and interpretate microarray gene expression data. Establishment of well-defined development process is very essential for understanding the complexity and organization of the system. We performed object-oriented analysis using Unified Modeling Language (UML) in specifying, visualizing and documenting microarray information system. The object-oriented analysis consists of three major steps: (i) use case modeling to describe various functionalities from the user's perspective (ii) dynamic modeling to illustrate behavioral aspects of the system (iii) object modeling to represent structural aspects of the system. As a result of our modeling activities we provide the UML diagrams showing various views of the microarray information system. We believe that the object-oriented analysis ensures effective documentations and communication of information system requirements. Another useful feature of object-oriented technique is structural continuity to standard microarray data model MAGE-OM (Microarray Gene Expression Object Model). The proposed modeling e(forts can be applicable for integration of biomedical information system.

  • PDF

장환형 단일가닥 DNA를 이용한 암세포 성장 억제 유전자 발굴 (Large-Circular Single-stranded Sense and Antisense DNA for Identification of Cancer-Related Genes)

  • 배윤위;문익재;서영배;도경오
    • 한국미생물·생명공학회지
    • /
    • 제38권1호
    • /
    • pp.70-76
    • /
    • 2010
  • The single-stranded large circular (LC)-sense DNA were utilized as probes for DNA chip experiments. The microarray experiment using LC-sense DNA probes found differentially expressed genes in A549 cells as compared to WI38VA13 cells, and microarray data were well-correlated with data acquired from quantitative real-time RT-PCR. A 5K LC-sense DNA microarray was prepared, and the repeated experiments and dye swap test showed consistent expression patterns. Subsequent functional analysis using LC-antisense library of overexpressed genes identified several genes involved in A549 cell growth. These experiments demonstrated proper feature of LC-sense molecules as probe DNA for microarray and the potential utility of the combination of LC-sense microarray and antisense libraries for an effective functional validation of genes.