• 제목/요약/키워드: microarray array

검색결과 147건 처리시간 0.023초

Application of DNA Microarray Technology to Molecular Microbial Ecology

  • Cho Jae-Chang
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2002년도 추계학술대회
    • /
    • pp.22-26
    • /
    • 2002
  • There are a number of ways in which environmental microbiology and microbial ecology will benefit from DNA micro array technology. These include community genome arrays, SSU rDNA arrays, environmental functional gene arrays, population biology arrays, and there are clearly more different applications of microarray technology that can be applied to relevant problems in environmental microbiology. Two types of the applications, bacterial identification chip and functional gene detection chip, will be presented. For the bacterial identification chip, a new approach employing random genome fragments that eliminates the disadvantages of traditional DNA-DNA hybridization is proposed to identify and type bacteria based on genomic DNA-DNA similarity. Bacterial genomes are fragmented randomly, and representative fragments are spotted on a glass slide and then hybridized to test genomes. Resulting hybridization profiles are used in statistical procedures to identify test strains. Second, the direct binding version of microarray with a different array design and hybridization scheme is proposed to quantify target genes in environmental samples. Reference DNA was employed to normalize variations in spot size and hybridization. The approach for designing quantitative microarrays and the inferred equation from this study provide a simple and convenient way to estimate the target gene concentration from the hybridization signal ratio.

  • PDF

전기화학적 방법에 의한 바이오칩의 SNP 검출 (SNP Detection of Biochip Using Electrochemical System)

  • 최용성;박대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.2128-2130
    • /
    • 2004
  • High throughput analysis using a DNA chip microarray is powerful tool in the post genome era. Less labor-intensive and lower cost-performance is required. Thus, this paper aims to develop the multi-channel type label-free DNA chip and detect SNP (Single nucleotide polymorphisms). At first, we fabricated a high integrated type DNA chip array by lithography technology. Various probe DNAs were immobilized on the microelectrode array. We succeeded to discriminate of DNA hybridization between target DNA and mismatched DNA on microarray after immobilization of a various probe DNA and hybridization of label-free target DNA on the electrodes simultaneously. This method is based on redox of an electrochemical ligand.

  • PDF

미소전극어레이형 DNA칩을 이용한 유전자다형의 전기화학적 검출 (Electrochemical Detection of Single Nucleotide Polymorphism (SNP) Using Microelectrode Array on a DNA Chip)

  • 최용성;권영수;박대희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권5호
    • /
    • pp.286-292
    • /
    • 2004
  • In this study, an integrated microelectrode array was fabricated on glass slide using microfabrication technology. Probe DNAs consisting of mercaptohexyl moiety at their 5-end were spotted on the gold electrode using micropipette or DNA arrayer utilizing the affinity between gold and sulfur. Cyclic voltammetry in 5mM ferricyanide/ferrocyanide solution at 100 ㎷/s confirmed the immobilization of probe DNA on the gold electrodes. When several DNAs were detected electrochemically, there was a difference between target DNA and control DNA in the anodic peak current values. It was derived from specific binding of Hoechst 33258 to the double stranded DNA due to hybridization of target DNA. It suggested that this DNA chip could recognize the sequence specific genes. It suggested that multichannel electrochemical DNA microarray is useful to develop a portable device for clinical gene diagnostic System.

마이크로어레이 실험 및 분석 데이터 처리를 위한 통합 관리 시스템의 설계와 구현 (Design and Implementation of Integrated System for Microarray Data)

  • 이미경;최정현;조환규
    • 한국미생물·생명공학회지
    • /
    • 제31권2호
    • /
    • pp.182-190
    • /
    • 2003
  • 마이크로어레이 기술이 널리 이용됨에 따라 마이크로어레이 이미지 데이터와 이미지 분석 데이터들이 급격히 늘어나고 있다. 그러나 국내에서는 그 데이터들을 효율적으로 관리하기 위한 시스템이 개발되어 공개된 경우가 없다. 그리고 마이크로어레이 실험은 한 실험실에서 분석하고 연구할 수 있는 유전자의 수가 제한되어 있으므로 서로 다른 연구실에서 실험한 연구 결과들을 공유함으로써 실험의 중복을 막을 수 있고 그 연구 결과들을 축척할 수 있다. 본 논문에서는 마이크로어레이 이미지 데이터를 처리 및 관리하기 위한 통합 시스템, WEMA(Web management of MicroArray)를 개발하였다. WEMA는 마이크로어레이 데이터 표준 규정의 제안인 MIAME(Minimal Information About a Microarray Experiment)에서 정의한 데이터 요소를 바탕으로 데이터 스키마를 설계하였으며 마이크로어레이 실험 설계에 따라 체계적으로 데이터를 관리하기 위해서 공동적인 데이터 단위를 정의하였다. WEMA의 주요 기능은 마이크로어레이 이미지 및 분석 데이터의 효율적인 관리, 데이터입출력의 통합 기능, 메타 파일 생성 등이다. 본 WEMA 시스템을 이용해서 실제로 한 식물 분자 생물학 연구실에서 만들어내는 마이크로어레이 이미지 데이터를 처리, 관리한 결과 생물학자들이 마이크로어레이 데이터를 체계적으로 관리, 분석할 수 있었으며 연구자들간의 데이터 교환 및 의사 소통이 원활히 이루어졌다.

Classification of Environmental Toxicants Using HazChem Human Array V2

  • An, Yu-Ri;Kim, Seung-Jun;Park, Hye-Won;Kim, Jun-Sub;Oh, Moon-Ju;Kim, Youn-Jung;Ryu, Jae-Chun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.250-256
    • /
    • 2009
  • Toxicogenomics using microarray technology offers the ability to conduct large-scale detections and quantifications of mRNA transcripts, particularly those associated with alterations in mRNA stability or gene regulation. In this study, we developed the HazChem Human Array V2 using the Agilent Sure-Print technology-based custom array, which is expected to facilitate the identification of environmental toxicants. The array was manufactured using 600 VOCs and PAHs-specific genes identified in previous studies. In order to evaluate the viability of the manufactured HazChem human array V2, we analyzed the gene expression profiles of 9 environmental toxicants (6 VOCs chemicals and 3 PAHs chemicals). As a result, nine toxicants were separated into two chemical types-VOCs and PAHs. After the chip validations with VOCs and PAHs, we conducted an expression profiling comparison of additional chemical groups (POPs and EDCs) using data analysis methods such as hierarchical clustering, 1-way ANOVA, SAM, and PCA. We selected 58 genes that could be classified into four chemical types via statistical methods. Additionally, we selected 63 genes that evidenced significant alterations in expression with all 13 environmental toxicants. These results suggest that the HazChem Human Array V2 will expedite the development of a screening system for environmentally hazardous materials at the level of toxicogenomics in the future.

Optimization of a microarray for fission yeast

  • Kim, Dong-Uk;Lee, Minho;Han, Sangjo;Nam, Miyoung;Lee, Sol;Lee, Jaewoong;Woo, Jihye;Kim, Dongsup;Hoe, Kwang-Lae
    • Genomics & Informatics
    • /
    • 제17권3호
    • /
    • pp.28.1-28.9
    • /
    • 2019
  • Bar-code (tag) microarrays of yeast gene-deletion collections facilitate the systematic identification of genes required for growth in any condition of interest. Anti-sense strands of amplified bar-codes hybridize with ~10,000 (5,000 each for up-and down-tags) different kinds of sense-strand probes on an array. In this study, we optimized the hybridization processes of an array for fission yeast. Compared to the first version of the array (11 ㎛, 100K) consisting of three sectors with probe pairs (perfect match and mismatch), the second version (11 ㎛, 48K) could represent ~10,000 up-/ down-tags in quadruplicate along with 1,508 negative controls in quadruplicate and a single set of 1,000 unique negative controls at random dispersed positions without mismatch pairs. For PCR, the optimal annealing temperature (maximizing yield and minimizing extra bands) was 58℃ for both tags. Intriguingly, up-tags required 3× higher amounts of blocking oligonucleotides than down-tags. A 1:1 mix ratio between up- and down-tags was satisfactory. A lower temperature (25℃) was optimal for cultivation instead of a normal temperature (30℃) because of extra temperature-sensitive mutants in a subset of the deletion library. Activation of frozen pooled cells for >1 day showed better resolution of intensity than no activation. A tag intensity analysis showed that tag(s) of 4,316 of the 4,526 strains tested were represented at least once; 3,706 strains were represented by both tags, 4,072 strains by up-tags only, and 3,950 strains by down-tags only. The results indicate that this microarray will be a powerful analytical platform for elucidating currently unknown gene functions.

Genome Wide Expression Analysis of the Effect of Woowhangchongshim-won on Rat Brain Injury

  • ;;;;;조수인
    • 대한한방내과학회지
    • /
    • 제30권3호
    • /
    • pp.594-603
    • /
    • 2009
  • Objectives : ICH breaks down blood vessels within the brain parenchyma, which finally leads to neuronal loss, drugs to treat ICH have not yet been established. In this experiment, we measured the effect of Woowhangchongshim-won (WWCSW) on intracerebral hemorrhage (ICH) in rat using microarray technology. Methods : We measured the effect of WWCSW on ICH in rat using microarray technology. ICH was induced by injection of collagenase type IV, and total RNA was isolated. Image files of microarray were measured using a ScanArray scanner, and the criteria of the threshold for up- and down-regulation was 2 fold. Hierarchical clustering was implemented using CLUSTER and TREEVIEW program, and for Ontology analysis. GOSTAT program was applied in which p-value was calculated by Chi square or Fisher's exact test based on the total array element. Results : WWCSW-treatment restored the gene expression altered by ICH-induction in brain to the levels of 76.0% and 70.1% for up- and down-regulated genes, respectively. Conclusion : Co-regulated genes by ICH model of rat could be used as molecular targets for therapeutic effects of drug including WWCSW. That is, the presence of co-regulated genes may represent the importance of these genes in ICH in the brain and the change of expression level of these co-regulated genes would also indicate the functional change of brain tissue.

  • PDF

신경정신 의학분야의 방사성동위원소 표지 cDNA 마이크로어레이 (Radioactive cDNA microarray in Neurospsychiatry)

  • 최재걸;신경호;이민수;김명곤
    • 대한핵의학회지
    • /
    • 제37권1호
    • /
    • pp.43-52
    • /
    • 2003
  • Microarray technology allows the simultaneous analysis of gene expression patterns of thousands of genes, in a systematic fashion, under a similar set of experimental conditions, thus making the data highly comparable. In some cases arrays are used simply as a primary screen loading to downstream molecular characterization of individual gene candidates. In other cases, the goal of expression profiling is to begin to identify complex regulatory networks underlying developmental processes and disease states. Microarrays were originally used with ceil lines or other simple model systems. More recently, microarrays have been used in the analysis of more complex biological tissues including neural systems and the brain. The application of cDNA arrays in neuropsychiatry has lagged behind other fields for a number of reasons. These include a requirement for a large amount of input probe RNA In fluorescent-glass based array systems and the cellular complexity introduced by multicellular brain and neural tissues. An additional factor that impacts the general use of microarrays in neuropsychiatry is the lack of availability of sequenced clone sets from model systems. While human cDNA clones have been widely available, high qualify rat, mouse, and drosophilae, among others are just becoming widely available. A final factor in the application of cDNA microarrays in neuropsychiatry is cost of commercial arrays. As academic microarray facilitates become more commonplace custom made arrays will become more widely available at a lower cost allowing more widespread applications. in summary, microarray technology is rapidly having an impact on many areas of biomedical research. Radioisotope-nylon based microarrays offer alternatives that may in some cases be more sensitive, flexible, inexpensive, and universal as compared to other array formats, such as fluorescent-glass arrays. In some situations of limited RNA or exotic species, radioactive membrane microarrays may be the most practical experimental approach in studying psychiatric and neurodegenerative disorders, and other complex questions in the brain.

사람 치수 세포와 치주 인대 세포의 유전자 발현에 관한 비교 연구 (THE COMPARISON OF GENE EXPRESSION FROM HUMAN DENTAL PULP CELLS AND PERIODONTAL LIGAMENT CELLS)

  • 소현;박상혁;최기운
    • Restorative Dentistry and Endodontics
    • /
    • 제34권5호
    • /
    • pp.430-441
    • /
    • 2009
  • 본 연구는 사람 치수세포 및 치주인대세포의 차이를 알아보고자 배양한 각각의 세포를 CDNA microarray assay를 통하여 유전자의 발현정도의 차이를 비교하였다. 그 결과를 바탕으로 각각의 세포에서 2배 이상의 유전자 발현의 차이를 보이는 유전자중 특징적인 3가지 유전자를 선택하여 RT-PCR로 검증한 결과 다음과 같은 결론을 얻었다; 1. Microarray assay 결과, 치주인대 세포에 비해 치수 세포에서 2배 이상 발현한 유전자 수는 총 51개가 나타났다. 2. RT-PCR의 결과, 치주인대세포에 비해 치수 세포에서 ITGA4, TGF-${\beta}2$ 등이 높게 나타났다. 3. Microarray assay결과, 치수 세포에서 비해 치주인대 세포에서 2배 이상 발현한 유전자 수는 총 19개가 나타났다. 4. RT-PCR의 결과, 치수 세포에 비해 치주인대세포에서 LUM, WISP1, MMP1 등이 높게 나타났다. 본 연구 결과로 치수세포에는 상아질 형성에 관여하는 특징적인 유전자가 치주인대세포에 비해 높게 발현되었으며, 치주인대세포에는 교원질 합성에 관여하는 특징적인 유전자가 치수세포에 비해 높게 발현되어, 치수세포와 치주인데 세포는 유전자 발현의 차이가 나타남을 알 수 있었다.

Inferring genetic regulatory networks of the inflammatory bowel disease in human peripheral blood mononuclear cells

  • Kim, Jin-Ki;Lee, Do-Heon;Yi, Gwan-Su
    • Bioinformatics and Biosystems
    • /
    • 제2권2호
    • /
    • pp.71-74
    • /
    • 2007
  • Cell phenotypes are determined by groups of functionally related genes. Microarray profiling of gene expression provides us response of cellular state to its perturbation. Several methods for uncovering a cellular network show reliable network reconstruction. In this study, we present reconstruction of genetic regulatory network of inflammation bowel disease in human peripheral blood mononuclear cell. The microarray based on Affymetrix Gene Chip Human Genome U133 Array Set HG-U133A is processed and applied network reconstruction algorithm, ARACNe. As a result, we will show that inferred network composed of 450 nodes and 2017 edges is roughly scale-free network and hierarchical organization. The major hub, CCNL2 (cyclin A2), in inferred network is shown to be associated with inflammatory function as well as apoptotic function.

  • PDF