Browse > Article
http://dx.doi.org/10.5808/GI.2019.17.3.e28

Optimization of a microarray for fission yeast  

Kim, Dong-Uk (Aging Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Lee, Minho (Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea)
Han, Sangjo (Data Analytics CoE, SK Telecom)
Nam, Miyoung (Department of New Drug Development, Chungnam National University)
Lee, Sol (Department of New Drug Development, Chungnam National University)
Lee, Jaewoong (Department of New Drug Development, Chungnam National University)
Woo, Jihye (Department of New Drug Development, Chungnam National University)
Kim, Dongsup (Department of Bio and Brain Engineering, Korea Advanced Institute of Science & Technology (KAIST))
Hoe, Kwang-Lae (Department of New Drug Development, Chungnam National University)
Abstract
Bar-code (tag) microarrays of yeast gene-deletion collections facilitate the systematic identification of genes required for growth in any condition of interest. Anti-sense strands of amplified bar-codes hybridize with ~10,000 (5,000 each for up-and down-tags) different kinds of sense-strand probes on an array. In this study, we optimized the hybridization processes of an array for fission yeast. Compared to the first version of the array (11 ㎛, 100K) consisting of three sectors with probe pairs (perfect match and mismatch), the second version (11 ㎛, 48K) could represent ~10,000 up-/ down-tags in quadruplicate along with 1,508 negative controls in quadruplicate and a single set of 1,000 unique negative controls at random dispersed positions without mismatch pairs. For PCR, the optimal annealing temperature (maximizing yield and minimizing extra bands) was 58℃ for both tags. Intriguingly, up-tags required 3× higher amounts of blocking oligonucleotides than down-tags. A 1:1 mix ratio between up- and down-tags was satisfactory. A lower temperature (25℃) was optimal for cultivation instead of a normal temperature (30℃) because of extra temperature-sensitive mutants in a subset of the deletion library. Activation of frozen pooled cells for >1 day showed better resolution of intensity than no activation. A tag intensity analysis showed that tag(s) of 4,316 of the 4,526 strains tested were represented at least once; 3,706 strains were represented by both tags, 4,072 strains by up-tags only, and 3,950 strains by down-tags only. The results indicate that this microarray will be a powerful analytical platform for elucidating currently unknown gene functions.
Keywords
bar-code; fission yeast; gene-deletion; microarray; tag;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Shoemaker DD, Lashkari DA, Morris D, Mittmann M, Davis RW. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat Genet 1996;14:450-456.   DOI
2 Lum PY, Armour CD, Stepaniants SB, Cavet G, Wolf MK, Butler JS, et al. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 2004;116:121-137.   DOI
3 Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999;285:901-906.   DOI
4 Kim DU, Hayles J, Kim D, Wood V, Park HO, Won M, et al. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 2010;28:617-623.   DOI
5 Nam M, Lee SJ, Han S, Kim D, Lee M, Kang EJ, et al. Systematic targeted gene deletion using the gene-synthesis method in fission yeast. J Microbiol Methods 2014;106:72-77.   DOI
6 Sipiczki M. Where does fission yeast sit on the tree of life? Genome Biol 2000;1:REVIEWS1011.
7 Hayles J, Wood V, Jeffery L, Hoe KL, Kim DU, Park HO, et al. A genome-wide resource of cell cycle and cell shape genes of fission yeast. Open Biol 2013;3:130053.   DOI
8 Pierce SE, Fung EL, Jaramillo DF, Chu AM, Davis RW, Nislow C, et al. A unique and universal molecular barcode array. Nat Methods 2006;3:601-603.   DOI
9 Ammar R, Smith AM, Heisler LE, Giaever G, Nislow C. A comparative analysis of DNA barcode microarray feature size. BMC Genomics 2009;10:471.   DOI
10 Pierce SE, Davis RW, Nislow C, Giaever G. Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. Nat Protoc 2007;2:2958-2974.   DOI
11 Moreno S, Klar A, Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 1991;194:795-823.   DOI
12 Han S, Lee M, Chang H, Nam M, Park HO, Kwak YS, et al. Construction of the first compendium of chemical-genetic profiles in the fission yeast Schizosaccharomyces pombe and comparative compendium approach. Biochem Biophys Res Commun 2013;436:613-618.   DOI
13 Gautier L, Cope L, Bolstad BM, Irizarry RA. affy: analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004;20:307-315.   DOI
14 Sheather SJ, Jones MC. A reliable data-based bandwidth selection method for Kernel density-estimation. J R Stat Soc Series B Methodol 1991;53:683-690.
15 Eason RG, Pourmand N, Tongprasit W, Herman ZS, Anthony K, Jejelowo O, et al. Characterization of synthetic DNA bar codes in Saccharomyces cerevisiae gene-deletion strains. Proc Natl Acad Sci U S A 2004;101:11046-11051.   DOI
16 Lee M, Choi SJ, Han S, Nam M, Kim D, Kim DU, et al. Mutation analysis of synthetic DNA barcodes in a fission yeast gene deletion library by Sanger sequencing. Genomics Inform 2018;16:22-29.   DOI