• Title/Summary/Keyword: microarray analysis

Search Result 885, Processing Time 0.03 seconds

Effects of Genistein on Cell Proliferation and Adipogenesis in Mouse 3T3-L1 Preadipocytes (이소플라본 genistein이 전지방세포 성장 및 지방세포형성과정에 미치는 영향)

  • Lim, Seung-Hyun;Kim, Hyo-Rim;Kim, Min-Jeong;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.49-54
    • /
    • 2012
  • The effects of genistein on cell proliferation and adipogenesis were examined in mouse 3T3-L1 preadipocyte cells. Genistein decreased viability of 3T3-L1 pre-adipocytes in a dose-dependent manner. Oil Red O staining of these cells also indicated that adipogenesis was inhibited by 50 ${\mu}M$ genistein treatment. We investigated the molecular mechanisms involved in the decrease in cell viability in genistein-treated 3T3-L1 cells by conducting an oligo DNA microarray analysis. We selected the sirtuin-1 gene, one of the upregulated genes, for further experimentation because sirtuin-1 belongs to the sirtuin family, which is associated with anti-obesity and anti-inflammation activities. We found that four phytochemicals (resveratrol, capsaicin, daidzein, and genistein) could increase sirtuin-1 expression. Genistein was the strongest inducer of sirtuin-1 among the tested phytochemicals. The inhibition of adipogenesis by genistein was recovered by surtuin-1 siRNA transfection. Overall, these results may further our understanding of the molecular mechanisms underlying the inhibition of proliferation and adipogenesis by genistein in mouse 3T3-L1 cells.

Isolation and Functional Identification of BrDSR, a New Gene Related to Drought Tolerance Derived from Brassica rapa (배추 유래 신규 건조 저항성 관련 유전자, BrDSR의 분리 및 기능 검정)

  • Yu, Jae-Gyeong;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.575-584
    • /
    • 2015
  • Drought stress is a crucial environmental factor determining crop survival and productivity. The goal of this study was to clearly identify a new drought stress-tolerance gene in Brassica rapa. From KBGP-24K microarray data with the B. rapa ssp. pekinensis inbred line 'Chiifu' under drought stress treatment, a gene which was named BrDSR (B. rapa Drought Stress Resistance) was chosen among 738 drought-responsive unigenes. BrDSR function has yet to be determined, but its expression was induced over 6-fold by drought. To characterize BrDSR, the gene was isolated from B. rapa inbred line 'CT001' and found to contain a 438-bp open reading frame encoding a 145 amino acid protein. The full-length cDNA of BrDSR was used to construct an over-expression vector, 'pSL100'. Tobacco transformation was then conducted to analyze whether the BrDSR gene can increase drought tolerance in plants. The BrDSR expression level in T1 transgenic tobacco plants selected via PCR and DNA blot analyses was up to 2.6-fold higher than non-transgenic tobacco. Analysis of phenotype clearly showed that BrDSR-expressing tobacco plants exhibited more tolerance than wild type under 10 d drought stress. Taking all of these findings together, we expect that BrDSR functions effectively in plant growth and survival of drought stress conditions.

Viral Hemorrhagic Septicemia Virus NV Gene Decreases Glycolytic Enzyme Gene Transcription (바이러스성 출혈성 패혈증 바이러스 NV 단백질에 의한 glucokinase 전사 활성의 억제)

  • Cho, Mi Young;Hwang, Jee Youn;Ji, Bo Young;Park, Myoung Ae;Seong, Mi So;Kim, So Young;Jung, Ye Eun;Cheong, Jae Hun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1470-1476
    • /
    • 2016
  • The viral hemorrhagic septicemia virus (VHSV), which belongs to the Novirhabdovirus genus of the Rhabdoviridae family, is a viral pathogen that causes severe losses in the olive flounder farming industry. Among six encoding VHSV proteins, the non-virion (NV) protein has been shown to have an impact on virulence. In our previous studies, transcriptomics microarray analysis by using VHSV-infected olive flounder showed that VHSV infection significantly down-regulated the mRNA expression of glycolytic enzymes. In addition, VHSV NV protein variants decreased the intracellular ATP level. Based on these results, we have tried to examine the effect of VHSV NV protein on glycolytic enzyme glucokinase expression, which phosphorylates glucose to glucose 6-phosphate. Our results indicated that the NV protein significantly decreased the mRNA expression of glucokinase in olive flounder HINAE cells. Furthermore, the NV protein played a negative role in the promoter activation of glucokinase. Furthermore, glucose uptake was effectively inhibited by VHSV infection and NV protein expression in olive flounder HINAE cells. These results suggest that the VHSV NV protein negatively regulates glycolytic enzyme expression by a transcription level and eventually leads to gradual morbidity of olive flounder through cellular energy deprivation. The present results may be useful for the prevention and diagnosis of VHSV infection in olive flounder.

Inhibition of Production of Reactive Oxygen Species and Gene Expression Profiles by Cirsii Japonici Herba Extract Treatment in HepG2 Cells

  • Rho, Sam-Woong;Chung, Hwan-Suck;Kang, Moon-Kyu;Na, Young-In;Cho, Chong-Woon;Kim, Hyung-Min;Jung, Hyuk-Sang;Park, Hi-Joon;Kim, Hong-Yeoul;Hong, Moo-Chang;Shin, Min-Kyu;Kim, Sung-Soo;Bae, Hyun-Su
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.224-229
    • /
    • 2005
  • Cirsii Japonici Herba (CJH) extract has been used for hundreds of years in Asian countries as a treatment for pollutant, radiation, and alcohol-induced liver damage. The reducing effect of CJH on hydrogen peroxide-induced reactive oxygen species (ROS) production, the main cause of cell damage or death, was evaluated using the HepG2 cell line. Cell survival was determined using MTS assay. The viability of cells treated with CJH was not significantly different from oxidative-stressed HepG2 cells. A dose-dependent inhibitory effect by CJH on ROS production was shown in oxidative-stressed cells using the $H_{2}DCFDA$ assay. To identify candidate genes responsible for the anti-oxidative effects of CJH on HepG2 cells, an oligonucleotide microarray analysis was performed. The expressions of five genes were decreased, whereas nineteen genes were up-regulated in CJH plus hydrogen peroxide treated cells, compared to only hydrogen peroxide treated cells. Among them, the expression of 5 genes was decreased in hydrogen peroxide treatment when compared to control. These genes are known to regulate cell survival and progression. On the other hand, it was shown that its main compounds were not a sylimarin or its analogs. The list of differentially expressed genes may provide further insight on the action and mechanism behind the anti-oxidative effects of Cirsii Japonici Herba.

Overexpression of Neuron-Specific Enolase as a Prognostic Factor in Patients with Gastric Cancer

  • Park, Taejin;Lee, Young-Joon;Jeong, Sang-Ho;Choi, Sang-Kyung;Jung, Eun-Jung;Ju, Young-tae;Jeong, Chi-Young;Park, Miyeong;Hah, Young-Sool;Yoo, Jiyun;Ha, Woo-Song;Hong, Soon-Chan;Ko, Gyung Hyuck
    • Journal of Gastric Cancer
    • /
    • v.17 no.3
    • /
    • pp.228-236
    • /
    • 2017
  • Purpose: Enolase is a cytoplasmic enzyme that catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate in the glycolytic pathway. The aim of this study was to investigate whether the overexpression of neuron-specific enolase (NSE) can serve as a prognostic factor in patients with gastric cancer (GC). Materials and Methods: To assess its prognostic value in GC, NSE expression was measured by immunohistochemistry in a clinically annotated tissue microarray comprising of 327 human GC specimens. Cytoplasmic NSE expression was scored from 0 to 4, reflecting the percentage of NSE-positive cells. Results: In terms of histology as per the World Health Organization criteria (P=0.34), there were no differences between the NSE overexpression (NSE-OE) and NSE underexpression (NSE-UE) groups. The NSE-OE group showed a significantly lower rate of advanced GC (P<0.01), lymph node metastasis (P=0.01), advanced stage group (P<0.01), cancer-related death (P<0.01), and cancer recurrence (P<0.01). Additionally, a Kaplan-Meier survival analysis revealed that the NSE-OE group had longer cumulative survival times than the NSE-UE group (log-rank test, P<0.01). However, there were no significant differences in the serum levels of NSE expression in patients with GC and healthy volunteers (P=0.28). Conclusions: Patients with NSE overexpressing GC tissues showed better prognostic results, implying that NSE could be a candidate biomarker of GC.

Chunghyul-dan acts as an anti-inflammatory agent in endothelial cells by regulating gene expression

  • Jung, Woo-Sang;Cho, Jin-Gu;In, Kyung-Min;Kim, Jong-Min;Cho, Ki-Ho;Park, Jung-Mi;Moon, Sang-Kwan;Kim, Kyung-Wook;Park, Seong-Uk;Pyee, Jae-Ho;Park, Sang-Gyu;Jeong, Yoon-Hwa;Park, Heon-Yong;Ko, Chang-Nam
    • Animal cells and systems
    • /
    • v.14 no.4
    • /
    • pp.275-282
    • /
    • 2010
  • Chunghyul-dan (CHD) is a combinatorial drug known to exert anti-inflammatory effects in endothelial cells. In this study, we employed global transcriptional profiling using cDNA microarrays to identify molecular mechanisms responsible for the anti-inflammatory activity of CHD in endothelial cells. An analysis of the microarray data revealed that transcript levels of monocyte chemotactic protein-1 (MCP-1), vascular cell-adhesion molecule-1 (VCAM-1) and activated leukocyte cell-adhesion molecule were dramatically altered in CHD-treated endothelial cells. These changes in gene expression were confirmed by RT-PCR, Western blotting and ELISA. Chronic CHD treatment also appeared to decrease MCP-1 secretion, probably as a result of decreased MCP-1 expression. In addition, we determined that chronic CHD treatment inhibited lipopolysaccharide-stimulated adhesion of THP-1 leukocytes to endothelial cells. The inhibitory effect of CHD on LPS-stimulated adhesion resulted from downregulation of VCAM-1 expression. Transmigration of THP-1 leukocytes through endothelial cells was also inhibited by chronic CHD treatment. In conclusion, CHD controls a variety of inflammatory activities by regulating MCP-1 and VCAM-1 gene expression.

IRS-2 Partially Compensates for the Insulin Signal Defects in IRS-1-/- Mice Mediated by miR-33

  • Tang, Chen-Yi;Man, Xiao-Fei;Guo, Yue;Tang, Hao-Neng;Tang, Jun;Zhou, Ci-La;Tan, Shu-Wen;Wang, Min;Zhou, Hou-De
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.123-132
    • /
    • 2017
  • Insulin signaling is coordinated by insulin receptor substrates (IRSs). Many insulin responses, especially for blood glucose metabolism, are mediated primarily through Irs-1 and Irs-2. Irs-1 knockout mice show growth retardation and insulin signaling defects, which can be compensated by other IRSs in vivo; however, the underlying mechanism is not clear. Here, we presented an Irs-1 truncated mutated mouse ($Irs-1^{-/-}$) with growth retardation and subcutaneous adipocyte atrophy. $Irs-1^{-/-}$ mice exhibited mild insulin resistance, as demonstrated by the insulin tolerance test. Phosphatidylinositol 3-kinase (PI3K) activity and phosphorylated Protein Kinase B (PKB/AKT) expression were elevated in liver, skeletal muscle, and subcutaneous adipocytes in Irs-1 deficiency. In addition, the expression of IRS-2 and its phosphorylated version were clearly elevated in liver and skeletal muscle. With miRNA microarray analysis, we found miR-33 was down-regulated in bone marrow stromal cells (BMSCs) of $Irs-1^{-/-}$ mice, while its target gene Irs-2 was up-regulated in vitro studies. In addition, miR-33 was down-regulated in the presence of Irs-1 and which was up-regulated in fasting status. What's more, miR-33 restored its expression in re-feeding status. Meanwhile, miR-33 levels decreased and Irs-2 levels increased in liver, skeletal muscle, and subcutaneous adipocytes of $Irs-1^{-/-}$ mice. In primary cultured liver cells transfected with an miR-33 inhibitor, the expression of IRS-2, PI3K, and phosphorylated-AKT (p-AKT) increased while the opposite results were observed in the presence of an miR-33 mimic. Therefore, decreased miR-33 levels can up-regulate IRS-2 expression, which appears to compensate for the defects of the insulin signaling pathway in Irs-1 deficient mice.

Characterization of Genes Related to the Cell Size Growth and CCN Family According to the Early Folliculogenesis in the Mouse (쥐의 초기 난포 발달에 관여하는 Cell Size Growth 및 CCN Family 유전자에 관한 연구)

  • Kim, Kyeoung-Hwa;Park, Chang-Eun;Yoon, Se-Jin;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.3
    • /
    • pp.269-277
    • /
    • 2005
  • Objectives: Previously, we sought to compile a list of genes expressed during early folliculogenesis by using cDNA microarray to investigate follicular gene expression and changes during primordialprimary follicle transition and development of secondary follicles (Yoon et al., 2005). Among those genes, a group of genes related to the cell size growth was characterized during the ovarian development in the present study. Methods: We determined ovarian expression pattern of six genes related to the cell size growth (cyr61, emp1, fhl1, socs2, wig1 and wisp1) and extended into CCN family (${\underline{c}}onnective$ tissue growth factor/${\underline{c}}ysteine$-rich 61/${\underline{n}}ephroblastoma$-overexpressed), ctgf, nov, wisp2, wisp3, including cyr61 and wisp1 genes. Expression of mRNA and protein according to the ovarian developmental stage was evaluated by in situ hybridization, and/or semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR), and immunohistochemistry, respectively. Results: Among 6 genes related to the cell size growth, cyr61 and wisp1 mRNA was detected only in oocytes in the postnatal day5 mouse ovaries. cyr61 mRNA expression was limited to the nucleolus of oocytes, while wisp1 was expressed in the cytoplasm and nucleolus of oocytes, except nucleus. cyr61 mRNA expression, however, was found in granulosa cells from secondary follicles. The rest 4 genes in the cell size growth group were detected in oocytes, granulosa and theca cells. Cyr61 and Wisp1 proteins were expressed in the oocyte cytoplasm from primordial follicle stage. Especially, Cyr61 protein was detected in pre-granulosa cells, Wisp1 protein was not. By using RT-PCR, we evaluated and decided that Cyr61 protein is produced by their own mRNA in pre-granulosa cells that was not detected by in situ hybridization. cyr61 and wisp1 genes are happen to be the CCN family members. The other members of CCN family were also studied, but their expression was detected in oocytes, granulose and theca cells. Conclusions: We firstly characterized the ovarian expression of genes related to the cell size growth and CCN family according to the early folliculogenesis. Cyr61 protein expression in the pre-granulosa cells is profound in meaning. Further functional analysis for cyr61 in early folliculogenesis is under investigation.

Vitamin D maintains E-cadherin intercellular junctions by downregulating MMP-9 production in human gingival keratinocytes treated by TNF-α

  • Oh, Changseok;Kim, Hyun Jung;Kim, Hyun-Man
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.5
    • /
    • pp.270-286
    • /
    • 2019
  • Purpose: Despite the well-known anti-inflammatory effects of vitamin D in periodontal health, its mechanism has not been fully elucidated. In the present study, the effect of vitamin D on strengthening E-cadherin junctions (ECJs) was explored in human gingival keratinocytes (HGKs). ECJs are the major type of intercellular junction within the junctional epithelium, where loose intercellular junctions develop and microbial invasion primarily occurs. Methods: HOK-16B cells, an immortalized normal human gingival cell line, were used for the study. To mimic the inflammatory environment, cells were treated with tumor necrosis factor-alpha ($TNF-{\alpha}$). Matrix metalloproteinases (MMPs) in the culture medium were assessed by an MMP antibody microarray and gelatin zymography. The expression of various molecules was investigated using western blotting. The extent of ECJ development was evaluated by comparing the average relative extent of the ECJs around the periphery of each cell after immunocytochemical E-cadherin staining. Vitamin D receptor (VDR) expression was examined via immunohistochemical analysis. Results: $TNF-{\alpha}$ downregulated the development of the ECJs of the HGKs. Dissociation of the ECJs by $TNF-{\alpha}$ was accompanied by the upregulation of MMP-9 production and suppressed by a specific MMP-9 inhibitor, Bay 11-7082. Exogenous MMP-9 decreased the development of ECJs. Vitamin D reduced the production of MMP-9 and attenuated the breakdown of ECJs in the HGKs treated with $TNF-{\alpha}$. In addition, vitamin D downregulated $TNF-{\alpha}$-induced nuclear factor kappa B ($NF-{\kappa}B$) signaling in the HGKs. VDR was expressed in the gingival epithelium, including the junctional epithelium. Conclusions: These results suggest that vitamin D may avert $TNF-{\alpha}$-induced downregulation of the development of ECJs in HGKs by decreasing the production of MMP-9, which was upregulated by $TNF-{\alpha}$. Vitamin D may reinforce ECJs by downregulating $NF-{\kappa}B$ signaling, which is upregulated by $TNF-{\alpha}$. Strengthening the epithelial barrier may be a way for vitamin D to protect the periodontium from bacterial invasion.

Far-infrared rays enhance mitochondrial biogenesis and GLUT3 expression under low glucose conditions in rat skeletal muscle cells

  • Seo, Yelim;Kim, Young-Won;Lee, Donghee;Kim, Donghyeon;Kim, Kyoungseo;Kim, Taewoo;Baek, Changyeob;Lee, Yerim;Lee, Junhyeok;Lee, Hosung;Jang, Geonwoo;Jeong, Wonyeong;Choi, Junho;Hwang, Doegeun;Suh, Jung Soo;Kim, Sun-Woo;Kim, Hyoung Kyu;Han, Jin;Bang, Hyoweon;Kim, Jung-Ha;Zhou, Tong;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.167-175
    • /
    • 2021
  • Far-infrared rays (FIR) are known to have various effects on atoms and molecular structures within cells owing to their radiation and vibration frequencies. The present study examined the effects of FIR on gene expression related to glucose transport through microarray analysis in rat skeletal muscle cells, as well as on mitochondrial biogenesis, at high and low glucose conditions. FIR were emitted from a bio-active material coated fabric (BMCF). L6 cells were treated with 30% BMCF for 24 h in medium containing 25 or 5.5 mM glucose, and changes in the expression of glucose transporter genes were determined. The expression of GLUT3 (Slc2a3) increased 2.0-fold (p < 0.05) under 5.5 mM glucose and 30% BMCF. In addition, mitochondrial oxygen consumption and membrane potential (ΔΨm) increased 1.5- and 3.4-fold (p < 0.05 and p < 0.001), respectively, but no significant change in expression of Pgc-1a, a regulator of mitochondrial biogenesis, was observed in 24 h. To analyze the relationship between GLUT3 expression and mitochondrial biogenesis under FIR, GLUT3 was down-modulated by siRNA for 72 h. As a result, the ΔΨm of the GLUT3 siRNA-treated cells increased 3.0-fold (p < 0.001), whereas that of the control group increased 4.6-fold (p < 0.001). Moreover, Pgc-1a expression increased upon 30% BMCF treatment for 72 h; an effect that was more pronounced in the presence of GLUT3. These results suggest that FIR may hold therapeutic potential for improving glucose metabolism and mitochondrial function in metabolic diseases associated with insufficient glucose supply, such as type 2 diabetes.