• Title/Summary/Keyword: microalga

Search Result 140, Processing Time 0.02 seconds

Evaluation of Anti-inflammatory Activities and Mechanisms of Microalga Phaeodactylum tricornutum

  • Kim, Jeong Hwa;Kim, Sang Min;Pan, Cheol-Ho;Choi, Joong-Kook;Lee, Jae Kwon
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.61-67
    • /
    • 2013
  • Due to their diversity and abundancy, marine resources have emerged as important biological resources to compensate the limited sources of terrestrial biological materials. Phaeodactylum tricornutum (PT) is one of classical model diatoms most widely studied for its ecology, physiology, biochemistry and molecular biology. In this study, four different PT extracts on lipopolysaccharide (LPS)-stimulated macrophages were compared for anti-inflammatory effect and investigated for the underlying mechanisms. The extracts of PT inhibited nitric oxide production from LPS stimulated RAW 264.7 cells in a dose dependent manner. These extracts also inhibited the expression of mRNA and production of proteins of pro-inflammatory cytokines such as interleukin (IL)-$1{\beta}$, IL-6 and tumor necrosis factor-${\alpha}$. These inhibitory effects were found to be caused by blockage of nuclear factor-${\kappa}B$ activation and phosphorylation of p38 mitogen-activated protein kinases, extracellular signal-regulated kinases 1 and 2 and c-Jun N-terminal kinase.

Mixotrophic Production of Marine Microalga Phaeodactylum tricornutum on Various Carbon Sources

  • Ceron Garcia M.C.;Camacho F.Garcia;Miron A.Sanchez;Sevilla J.M.Fernandez;Chisti Y.;Grima E.Molina
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.689-694
    • /
    • 2006
  • We investigated the potential use of various carbon sources (fructose, glucose, mannose, lactose, and glycerol) for culturing Phaeodactylum tricornutum UTEX-640 in mixotrophic and heterotrophic batch cultures. Concentrations of carbon substrates tested ranged from 0.005 M to 0.2 M. P. tricornutum did not grow heterotrophically on any of the C-sources used, but successive additions of organic carbon in mixotrophic growth mode substantially increased the biomass concentration and productivity relative to photoautotrophic controls. The maximum biomass productivities in mixotrophic cultures for glycerol, fructose, and glucose were 21.30 mg/l h, 15.80 mg/l h, and 10.20 mg/l h, respectively. These values were respectively 10-, 8-, and 5-fold higher than those obtained in the corresponding photoautotrophic control cultures. Mannose and lactose did not significantly affect microalgal growth. The biomass lipids, eicosapentaenoic acid (EPA) and pigments contents were considerably enhanced with glycerol and fructose in relation to photoautotrophic controls. The EPA content was barely affected by the sugars, but were more than 2-fold higher in glycerol-fed cultures than in photoautotrophic controls.

Identification and Heterologous Expression of a ${\Delta}4$-Fatty Acid Desaturase Gene from Isochrysis sphaerica

  • Guo, Bing;Jiang, Mulan;Wan, Xia;Gong, Yangmin;Liang, Zhuo;Hu, Chuanjiong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1413-1421
    • /
    • 2013
  • The marine microalga Isochrysis sphaerica is rich in the very-long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (EPA, $C20:5{\omega}-3$) and docosahexaenoic acid (DHA, $C22:6{\omega}-3$) that are important to human health. Here, we report a functional characterization of a ${\Delta}4$-fatty acid desaturase gene (FAD4) from I. sphaerica. IsFAD4 contains a 1,284 bp open reading frame encoding a 427 amino acid polypeptide. The deduced amino sequence comprises three conserved histidine motifs and a cytochrome b5 domain at its N-terminus. Phylogenetic analysis indicated that IsFad4 formed a unique Isochrysis clade distinct from the counterparts of other eukaryotes. Heterologous expression of IsFAD4 in Pichia pastoris showed that IsFad4 was able to desaturate docosapentaenoic acid (DPA) to form DHA, and the rate of converting DPA to DHA was 79.8%. These results throw light on the potential industrial production of specific polyunsaturated fatty acids through IsFAD4 transgenic yeast or oil crops.

Utility of the pat gene as a selectable marker gene in production of transgenic Dunaliella salina

  • Jung, Hyo Sun;Kim, Dong Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.7
    • /
    • pp.31.1-31.6
    • /
    • 2016
  • Background: The objective of this study was to develop an efficient selectable marker for transgenic Dunaliella salina. Results: Tests of the sensitivity of D. salina to the antibiotic chloramphenicol and the herbicide Basta$^{(R)}$ showed that cells ($1.0{\times}10^6cells/ml$) treated with 1000 or $1500{\mu}g/ml$ chloramphenicol died in 8 or 6 days, respectively, whereas D. salina cells ($1.0{\times}10^6cells/ml$) treated with 5, 10, 20, or $40{\mu}g/ml$ Basta$^{(R)}$ died in 2 days. Therefore, D. salina is more sensitive to Basta$^{(R)}$ than to chloramphenicol. To examine the possibility of using the phosphinothricin N-acetyltransferase (pat) gene as a selectable marker gene, we introduced the pat genes into D. salina with particle bombardment system under the condition of helium pressure of 900 psi from a distance of 3 cm. PCR analysis confirmed that the gene was stably inserted into the cells and that the cells survived in $5{\mu}g/ml$ Basta$^{(R)}$, the medium used to select the transformed cells. Conclusions: The findings of this study suggest that the pat gene can be used as an efficient selectable marker when producing transgenic D. salina.

Anaerobic co-digestion of food waste leachate with microalgae for improvement of methane production (메탄생산 향상을 위한 음폐수와 미세조류의 혐기성 통합소화)

  • Lee, Kwanyong;Chantrasakdakul, Phrompol;Kim, Daegi;Park, Jongjin;Choi, Jang-Seung;Park, Ki Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.55-60
    • /
    • 2014
  • Food waste leachate (FWL) is a serious pollutant waste coming from the food waste recycling facilities in Korea. FWL has a high organic matter content and high COD to nitrogen (COD/N) ratio, which can disturb efficient methane production in the anaerobic digestion of FWL. In the present study a microalga, Clorella vulgaris (C.V), was used as co-substrate for the FWL anaerobic digestion in order to supply nutrients, decrease the COD/N ratio and increase its methane yield. Different co-digestion mixtures (COD/N ratios) were studied by using biochemical methane potential test and modified Gompertz equation for kinetic study. Mixed substrate of FWL and C. vulgaris in the co-digestion clearly showed more the biomethane yield than the sole substrates. The maximum methane production, 827.7 mL-$CH_4$/g-VS added, was obtained for COD/N ratio of 24/1, whereas the highest improvement of methane yield was found for COD/N ratio of 15/1.

Growth characteristics and lipid content of three Korean isolates of Botryococcus braunii (Trebouxiophyceae)

  • Lee, Chan-Hee;Chae, Hyun-Sik;Lee, Seung-Hoon;Kim, Han Soon
    • Journal of Ecology and Environment
    • /
    • v.38 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • Three strains of the green microalga Botryococcus braunii (JJS, KCM, and KJD) were isolated from different water bodies in Korea and grown as batch cultures in the laboratory. The effects of different growth media and temperatures on the growth rate were investigated, as well as the effect of temperature on the total lipid content and lipid profile. All three strains had the highest growth rates in BG-11 medium and at $25^{\circ}C$. Maximal lipid production ($gL^{-1}$) was at $30^{\circ}C$ in the JJS strain and at $25^{\circ}C$ in the KCM and KJD strains. However, all the three strains produced the greatest percent dry weight of total lipids at $15^{\circ}C$ and had the lowest percent dry weight of total lipids at $25^{\circ}C$. In general, oleic acid, linolenic acid, and behenic acid were the most common fatty acids in all three strains. However, the three strains varied considerably in their fatty acid profiles at different culture temperatures.

Stress-induced secondary carotenogenesis in Coelastrella rubescens (Scenedesmaceae, Chlorophyta), a producer of value-added keto-carotenoids

  • Minyuk, Galina;Chelebieva, Elina;Chubchikova, Irina;Dantsyuk, Natalia;Drobetskaya, Irina;Sakhon, Evgenii;Chekanov, Konstantin;Solovchenko, Alexei
    • ALGAE
    • /
    • v.32 no.3
    • /
    • pp.245-259
    • /
    • 2017
  • We report on the culture growth and stress-induced secondary carotenogenesis in a biotechnologically promising but largely unexplored chlorophyte Coelastrella rubescens strain Vinatzer/Innsbruck V 195. Changes in the cell morphometry, biomass accumulation, its carotenoid and fatty acid profiles were followed in the cultures supplemented with either inorganic ($CO_2$) or organic (sodium acetate) carbon on the background of low-pH stress. Collectively, the results of the study characterize C. rubescens as a biotechnologically promising, potentially double-purpose organism. It produces several secondary keto-carotenoids with a considerable proportion of astaxanthin and canthaxanthin. At the same time, the cell lipid fatty acid profile of this microalga is suitable for obtaining a high-quality biodiesel complying with the strictest EN14214 European standard.

Statistical Optimization of Medium Components for the Production of Prodigiosin by Hahella chejuensis KCTC 2396

  • Kim, Sung-Jin;Lee, Hong-Kum;Yim, Joung-Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1903-1907
    • /
    • 2008
  • Prodigiosin is a natural red pigment with algicidal activity against Cochlodinium polykrikoides, a major harmful red-tide microalga. To increase the yield of prodigiosin production by Hahella chejuensis KCTC 2396, significant medium components were determined using a two-level Plackett-Burman statistical design technique. Among 12 components included in basal medium, $NaHCO_3$, ${Na}_{2}{SiO}_{3}$, ${NH_4}{NO_3}$, ${Na}_{2}{SO}_{4}$ and $CaCl_2$ were determined to be important for prodigiosin production. The medium formulation was finally optimized using a Box-Behnken design as follows: 1% sucrose; 0.4% peptone; 0.1 % yeast extract; and (g/l): NaCl, 20.0; ${Na}_{2}{SO}_{4}$, 9.0; $CaCl_2$, 1.71; KCl, 0.4; and (mg/l): ${H_3}{BO_3}$, 10.0; KBr, 50.0; NaF, 2.0; $NaHCO_3$, 45.0; ${Na}_{2}{SiO}_{3}$, 4.5; ${NH_4}{NO_3}$, 4.5. The predicted maximum yield of prodigiosin in the optimized medium was 1.198 g/l by the Box-Behnken design, whereas the practical production was 1.495 g/l, which was three times higher than the basal medium (0.492 g/l).

Isolation and Proteomic Analysis of a Chlamydomonas reinhardtii Mutant with Enhanced Lipid Production by the Gamma Irradiation Method

  • Baek, Jaewon;Choi, Jong-il;Park, Hyun;Lim, Sangyong;Park, Si Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2066-2075
    • /
    • 2016
  • In this study, an enhanced lipid-producing mutant strain of the microalga Chlamydomonas reinhardtii was developed by gamma irradiation. To induce the mutation, C. reinhardtii was gamma irradiated at a dose of 400 Gy. After irradiation, the surviving cells were stained with Nile red. The mutant (Cr-4013) accumulating 20% more lipid than the wild type was selected. Thin-layer chromatography revealed the triglyceride and free fatty acid contents to be markedly increased in Cr-4013. The major fatty acids identified were palmitic acid, oleic acid, linoleic acid, and linolenic acid. Random amplified polymeric DNA analysis showed partial genetic modifications in Cr-4013. To ascertain the changes of protein expression in the mutant strain, two-dimensional electrophoresis was conducted. These results showed that gamma radiation could be used for the development of efficient microalgal strains for lipid production.

The Treatment of Swine Wastes and the Production of High Protein Feedstocks from Photoheterotrophic Growth of Spirulina platensis (Spirulina platensis를 이용한 축산 폐수처리 및 고단백 사료원의 생산)

  • Sung, Ki-Heun;Lee, Chung-Ho;Park, Young-Shik;Kim, Hyun-Kyu;Yu, Ho-Keum;Ohh, Sang-Jip;Lee, Hyeon-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.2
    • /
    • pp.197-202
    • /
    • 1994
  • Microalga, Spirulina platensis has been cultivated in a pilot scale photo-bioreactor to treat wastewater and to produce high protein feedstocks from swine waste containing medium. 0.31(1/day) of specific growth rate and 0.170 of bioenergeric yield were obtanined from batch cultivation in 30% waster containing medium, compared to 0.71(1/day) and 0.545 from clean culture. An optimal dilution concentration was decided as 20% of working volume, based upon the cell growth and biomass productivity. The removal rate of nitrates in the wastewater was decreased as the adding concentration of wastewater was increased while the decrease of total phosphates was reversed, showing 0.33(1/day) and 0.30(1/day) of rate constants for nitrate removal in 10% addition and for phosphate removal in 30% addition, respectively. The chemical composition and amino acid profile of the biomass were superior to those of commerically available health food product, Spirulina sp.

  • PDF