Browse > Article
http://dx.doi.org/10.4490/algae.2017.32.8.6

Stress-induced secondary carotenogenesis in Coelastrella rubescens (Scenedesmaceae, Chlorophyta), a producer of value-added keto-carotenoids  

Minyuk, Galina (The A.O. Kovalevsky Institute of Marine Biological Research)
Chelebieva, Elina (The A.O. Kovalevsky Institute of Marine Biological Research)
Chubchikova, Irina (The A.O. Kovalevsky Institute of Marine Biological Research)
Dantsyuk, Natalia (The A.O. Kovalevsky Institute of Marine Biological Research)
Drobetskaya, Irina (The A.O. Kovalevsky Institute of Marine Biological Research)
Sakhon, Evgenii (The A.O. Kovalevsky Institute of Marine Biological Research)
Chekanov, Konstantin (Biological Faculty of Lomonosov Moscow State University)
Solovchenko, Alexei (Biological Faculty of Lomonosov Moscow State University)
Publication Information
ALGAE / v.32, no.3, 2017 , pp. 245-259 More about this Journal
Abstract
We report on the culture growth and stress-induced secondary carotenogenesis in a biotechnologically promising but largely unexplored chlorophyte Coelastrella rubescens strain Vinatzer/Innsbruck V 195. Changes in the cell morphometry, biomass accumulation, its carotenoid and fatty acid profiles were followed in the cultures supplemented with either inorganic ($CO_2$) or organic (sodium acetate) carbon on the background of low-pH stress. Collectively, the results of the study characterize C. rubescens as a biotechnologically promising, potentially double-purpose organism. It produces several secondary keto-carotenoids with a considerable proportion of astaxanthin and canthaxanthin. At the same time, the cell lipid fatty acid profile of this microalga is suitable for obtaining a high-quality biodiesel complying with the strictest EN14214 European standard.
Keywords
biodiesel; Coelastrella (Scotiellopsis) rubescens; $CO_2$; cultivation; fatty acids; growth rate; PH; pigments;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sarada, R., Bhattacharya, S., Bhattacharya, S. & Ravishankar, G. A. 2002. A response surface approach for the production of natural pigment astaxanthin from green alga, Haematococcus pluvialis: effect of sodium acetate, culture age, and sodium chloride. Food Biotechnol. 16:107-120.   DOI
2 Shah, M. M. R., Liang, Y., Cheng, J. J. & Daroch, M. 2016. Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front. Plant Sci. 7:531.
3 Singh, H., Shukla, M. R., Chary, K. V. R. & Rao, B. J. 2014. Acetate and bicarbonate assimilation and metabolite formation in Chlamydomonas reinhardtii: a $^{13}C$-NMR study. PLoS ONE 9:e106457.   DOI
4 Solovchenko, A. E. 2013. Physiology and adaptive significance of secondary carotenogenesis in green microalgae. Russ. J. Plant Physiol. 60:1-13.   DOI
5 Solovchenko, A. E. 2015. Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. Photosynth. Res. 125:437-449.   DOI
6 Solovchenko, A. & Chekanov, K. 2014. Production of carotenoids using microalgae cultivated in ohotobioreactors. In Paek, K. -Y., Murthy, H. N. & Zhong, J. -J. (Eds.) Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer, Dordrecht, pp. 63-91.
7 Solovchenko, A. & Khozin-Goldberg, I. 2013. High-$CO_2$ tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation. Biotechnol. Lett. 35:1745-1752.   DOI
8 Solovchenko, A., Merzlyak, M. N., Khozin-Goldberg, I., Cohen, Z. & Boussiba, S. 2010. Coordinated carotenoid and lipid syntheses induced in Parietochloris incisa (Chlorophyta, Trebouxiophyceae) mutant deficient in ${\Delta}$5 desaturase by nitrogen starvation and high light. J. Phycol. 46:763-772.   DOI
9 Subramanian, S., Barry, A. N., Pieris, S. & Sayre, R. T. 2013. Comparative energetics and kinetics of autotrophic lipid and starch metabolism in chlorophytic microalgae: implications for biomass and biofuel production. Biotechnol. Biofuels 6:150.   DOI
10 Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729.   DOI
11 Vonshak, A. 1985. Microalgae: laboratory growth techniques and outdoor biomass production. In Coombs, J., Hall, D. O., Long, S. P. & Scurlock, J. M. O. (Eds.) Techniques in Bioproductivity and Photosynthesis. Pergamon Press, Oxford, pp. 188-203.
12 Wang, B., Zhang, Z., Hu, Q., Sommerfeld, M., Lu, Y. & Han, D. 2014. Cellular capacities for high-light acclimation and changing lipid profiles across life cycle stages of the green alga Haematococcus pluvialis. PLoS ONE 9:e106679.   DOI
13 Wiessner, W. 1979. Photoassimilation of organic compounds. In Gibbs, M. & Latzko, E. (Eds.) Encyclopedia of Plant Physiology. Springer Verlag, Berlin, pp. 181-189.
14 Wood, A. M., Everroad, R. C. & Wingard, L. M. 2005. Measuring growth rates in microalgal cultures. In Anderson, R. A. (Ed.) Algal Culturing Techniques. Vol. 18. Elsevier Academic Press, Burlington, MA, pp. 269-288.
15 Yu, X., Chen, L. & Zhang, W. 2015. Chemicals to enhance microalgal growth and accumulation of high-value bioproducts. Front. Microbiol. 6:56.
16 Zhang, D. H., Ng, Y. K. & Phang, S. M. 1997. Composition and accumulation of secondary carotenoids in Chlorococcum sp. J. Appl. Phycol. 9:147-155.   DOI
17 Abe, K., Hattori, H. & Hirano, M. 2007. Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chem. 100:656-661.   DOI
18 Ahlgren, G. & Merino, L. 1991. Lipid analysis of freshwater microalgae: a method study. Arch. Hydrobiol. 121:295-306.
19 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410.   DOI
20 Andreyeva, V. 1998. Terrestrial and aerophilic green algae (Chlorophyta: Terasporales, Chlorococcales, Chlorosarcinales). Nauka, St. Petersburg, 349 pp.
21 Beers, R. F. Jr. & Sizer, I. W. 1956. Progressive inhibition of the catalase-hydrogen peroxide system by acetate, chloride and azide. Arch. Biochem. Biophys. 60:115-125.   DOI
22 Bishoff, H. & Bold, H. C. 1963. Phycological studies. IV. Some soil algae from enchanted rock and related algae species. University of Texas Publication, Austin, TX, 95 pp.
23 Bligh, E. G. & Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917.   DOI
24 Borowitzka, M. 2013. Dunaliella: biology, production, and markets. In Richmond, A. & Hu, Q. (Eds.) Handbook of Microalgal Culture: Applied Phycology and Biotechnology. 2nd ed. Wiley-Blackwell, West Sussex, pp. 359-368.
25 Borowitzka, M. A. & Moheimani, N. R. 2013. Sustainable biofuels from algae. Mitig. Adapt. Strateg. Glob. Change 18:13-25.   DOI
26 Bouarab, L., Dauta, A. & Loudiki, M. 2004. Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration. Water Res. 38:2706-2712.   DOI
27 Boussiba, S. 2000. Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol. Plant. 108:111-117.   DOI
28 Brown, T. E., Richardson, F. L. & Vaughn, M. L. 1967. Development of red pigmentation in Chlorococcum wimmeri (Chlorophyta: Chlorococcales). Phycologia 6:167-184.   DOI
29 Buchheim, M. A., Sutherland, D. M., Buchheim, J. A. & Wolf, M. 2013. The blood alga: phylogeny of Haematococcus (Chlorophyceae) inferred from ribosomal RNA gene sequence data. Eur. J. Phycol. 48:318-329.   DOI
30 Chekanov, K., Lobakova, E., Selyakh, I., Semenova, L., Sidorov, R. & Solovchenko, A. 2014. Accumulation of astaxanthin by a new Haematococcus pluvialis strain BM1 from the White Sea coastal rocks (Russia). Mar. Drugs 12:4504-4520.   DOI
31 Chelebieva, E. S., Minyuk, G. S., Drobetskaya, I. V. & Chubchikova, I. N. 2013. Physiological and biochemical characteristics of Ettlia carotinosa Komarek 1989 (Chlorophyceae) under experimental stress condition. Mors'kyi Ekolohichnyi Zhurnal 12:78-87.
32 Chubchikova, I. N., Minyuk, G. S. & Drobetskaya, I. V. 2010. Secondary carotenogenesis in green microalgae Scotiellopsis rubescens Vinatz. under natural insolation and temperature. Ekologiya Morya 81:77-81.
33 DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356.   DOI
34 Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792-1797.   DOI
35 Fabregas, J., Otero, A., Maseda, A. & Dominguez, A. 2001. Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J. Biotechnol. 89:65-71.   DOI
36 Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791.   DOI
37 Han, D., Li, Y. & Hu, Q. 2013. Biology and commercial aspects of Haematococcus pluvialis. In Richmond, A. & Hu, Q. (Eds.) Handbook of Microalgal Culture: Applied Phycology and Biotechnology. 2nd ed. Wiley-Blackwell, West Sussex, pp. 388-405.
38 Hanagata, N. 1998. Phylogeny of the subfamily Scotiellocystoideae (Chlorophyceae, Chlorophyta) and related taxa inferred from 18S ribosomal RNA gene sequence data. J. Phycol. 34:1049-1054.   DOI
39 Heifetz, P. B., Forster, B., Osmond, C. B., Giles, L. J. & Boynton, J. E. 2000. Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses. Plant Physiol. 122:1439-1445.   DOI
40 Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E. & Natarajan, M. 2012. Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 16:143-169.   DOI
41 Hu, C. -W., Chuang, L. -T., Yu, P. -C. & Chen, C. -N. N. 2013. Pigment production by a new thermotolerant microalga Coelastrella sp. F50. Food Chem. 138:2071-2078.   DOI
42 Chubchikova, I. N., Minyuk, G. S., Drobetskaya, I. V. & Dantsyuk, N. V. 2009. Chlorococcal microalgae as source of natural secondary carotenoids. Ekologiya Morya 77:77-83.
43 Hyka, P., Lickova, S., Přibyl, P., Melzoch, K. & Kovar, K. 2013. Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol. Adv. 31:2-16.   DOI
44 Islam, M. A., Magnusson, M., Brown, R. J., Ayoko, G. A., Nabi, M. N. & Heimann, K. 2013. Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies 6:5676-5702.   DOI
45 Ji, F., Liu, Y., Li, G., Zhou, Y., Tian, L., Ma, Z. & Dong, R. 2013. Effects of glucose, acetic acid and glycerol on biomass accumulation of Chlorella sp. In Proc. Am. Soc. Agr. Biol. Eng. Kansas City, Missouri, 2013 July 21-24. American Society of Agricultural and Biological Engineers, St. Joseph, MI, No. 131620778.
46 Juneja, A., Ceballos, R. M. & Murthy, G. S. 2013. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607-4638.   DOI
47 Karpagam, R., Raj, K. J., Ashokkumar, B. & Varalakshmi, P. 2015. Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: lipid enhancement methods and media optimization using response surface methodology. Bioresour. Technol. 188:177-184.   DOI
48 Kaufnerova, V. & Elias, M. 2013. The demise of the genus Scotiellopsis Vinatzer (Chlorophyta). Nova Hedwigia 97:415-428.   DOI
49 Kobayashi, M., Kakizono, T. & Nagai, S. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microbiol. 59:867-873.
50 Kessler, E. & Czygan, F. 1965. Chlorella zofingiensis Donz: Isolierung neuer Stamme und ihre physiologisch-biochemischen Eigenschaften. Ber. Deutsch. Bot. Gesell. 78:342-347.
51 Lam, M. K. & Lee, K. T. 2011. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol. Adv. 30:673-690.
52 Lemoine, Y. & Schoefs, B. 2010. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth. Res. 106:155-177.   DOI
53 Leu, S. & Boussiba, S. 2014. Advances in the production of high-value products by microalgae. Ind. Biotechnol. 10:169-183.   DOI
54 Lichtenthaler, H. K. 1987. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148:350-382.
55 Liu, B. -H. & Lee, Y. -K. 2000. Secondary carotenoids formation by the green alga Chlorococcum sp. J. Appl. Phycol. 12:301-307.   DOI
56 Liu, F. J., Li, S. X., Huang, B. Q., Zheng, F. Y. & Huang, X. G. 2016. Effect of excessive $CO_2$ on physiological functions in coastal diatom. Sci. Rep. 6:21694.   DOI
57 Lorenz, R. T. & Cysewski, G. R. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18:160-167.   DOI
58 Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.
59 Minyuk, G. 2008. Physiological, biochemical, and biophysical characteristics of the microalga Haematococcus pluvialis, a promising source of natural astaxanthin. In Tokarev, Y. N., Finenko, Z. Z. & Shadrin, N. V. (Eds.) The Black Sea Microalgae: Problems of Biodiversity Preservation and Biotechnological Usage. ECOSI-Gidrofizika, Sevastopol, pp. 353-392.
60 Minyuk, G. S., Chelebieva, E. S., Chubchikova, I. N., Dantsyuk, N. V., Drobetskaya, I. V., Sakhon, E. G., Chivkunova, O. B., Chekanov, K. A., Lobakova, E. S., Sidorov, R. A. & Solovchenko, A. E. 2016. pH and $CO_2$ effects on Coelastrella (Scotiellopsis) rubescens growth and metabolism. Russ. J. Plant Physiol. 63:566-574.   DOI
61 Minyuk, G. S., Drobetskaya, I. V., Chubchikova, I. N., Dantsyuk, N. V. & Chelebieva, E. S. 2010. Screening of green microalgae as potential source of nature ketocarotenoids: the relevance, strategy and study approach. Ekologiya Morya 80:67-78.
62 Murphy, J. & Riley, J. P. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27:31-36.   DOI
63 Nelson, D. L. & Cox, M. M. 2013. Lehninger principles of biochemistry. 6th ed. MacMillan, New York, 1340 pp.
64 Ozben, T. 2013. Free radicals, oxidative stress, and antioxidants: pathological and physiological significance. Vol. 296. Springer, New York, 395 рp.
65 Pal, D., Khozin-Goldberg, I., Cohen, Z. & Boussiba, S. 2011. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl. Microbiol. Biotechnol. 90:1429-1441.   DOI
66 Perez-Perez, M. E., Lemaire, S. D. & Crespo, J. L. 2012. Reactive oxygen species and autophagy in plants and algae. Plant Physiol. 160:156-164.   DOI
67 Puncochaiova, M. & Kalina, T. 1981. Taxonomy of the genus Scotiellopsis Vinatzer (Chlorococcales, Chlorophyta). Algol. Stud. 27:119-147.
68 Recht, L., Topfer, N., Batushansky, A., Sikron, N., Gibon, Y., Fait, A., Nikoloski, Z., Boussiba, S. & Zarka, A. 2014. Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen-starvation in the green alga Haematococcus pluvialis. J. Biol. Chem. 289:30387-30403.   DOI
69 Saitou, N. & Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-425.