• Title/Summary/Keyword: microaccelerometer

Search Result 24, Processing Time 0.02 seconds

Feedback Control for Expanding Range and Improving Linearity of Microaccelerometers

  • Park, Yong-Hwa;Shim, Joon-Sub;Park, Sang-Jun;Kwak, Dong-Hun;Ko, Hyoung-Ho;Song, Tae-Yong;Huh, Kun-Soo;Park, Jahang-Hyon;Cho, Dong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1706-1710
    • /
    • 2004
  • This paper presents a feedback-controlled, MEMS-fabricated microaccelerometer (${\mu}$XL). The ${\mu}$XL has received much commercial attraction, but its performance is generally limited. To improve the open-loop performance, a feedback controller is designed and experimentally evaluated. The feedback controller is applied to the x/y-axis ${\mu}$XL fabricated by sacrificial bulk micromachining (SBM) process. Even though the resolution of the closed-loop system is slightly worse than open-loop system, the bandwidth, linearity, and bias stability are significantly improved. The noise equivalent resolution of open-loop system is 0.615 mg and that of closed-loop system is 0.864 mg. The bandwidths of open-loop and closed-loop system are over 100 Hz. The input range, non-linearity and bias stability are improved from ${\pm}$10 g to ${\pm}$18 g, from 11.1 %FSO to 0.86 %FSO, and from 0.221 mg to 0.128 mg by feedback control, respectively

  • PDF

Design, Fabricaiton and Testing of a Piezoresistive Cantilever-Beam Microaccelerometer for Automotive Airbag Applications (에어백용 압저항형 외팔보 미소 가속도계의 설계, 제작 및 시험)

  • Ko, Jong-Soo;Cho, Young-Ho;Kwak, Byung-Man;Park, Kwan-Hum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.408-413
    • /
    • 1996
  • A self-diagnostic, air-damped, piezoresitive, cantilever-beam microaccelerometer has been designed, fabricated and tested for applications to automotive electronic airbag systems. A skew-symmetric proof-mass has been designed for self-diagnostic capability and zero transverse sensitivity. Two kinds of multi-step anisotropic etching processes are developed for beam thickness control and fillet-rounding formation, UV-curing paste has been used for sillicon-to-glass bounding. The resonant frequency of 2.07kHz has been measured from the fabricated devices. The sensitivity of 195 $\mu{V}$/g is obtained with a nonlinearity of 4% over $\pm$50g ranges. Flat amplitude response and frequency-proportional phase response have been obserbed, It is shown that the design and fabricaiton methods developed in the present study yield a simple, practical and effective mean for improving the performance, reliability as well as the reproducibility of the accelerometers.

A High-performance X/Y-axis Microaccelerometer Fabricated on SOI Wafer without Footing Using the Sacrificial Bulk Micromachining (SBM) Process

  • Ko, Hyoung-Ho;Kim, Jong-Pal;Park, Sang-Jun;Kwak, Dong-Hun;Song, Tae-Yong;Setaidi, Dadi;Carr, William;Buss, James;Dan Cho, Dong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2187-2191
    • /
    • 2003
  • In this paper, a x/y-axis accelerometer is fabricated, using the SBM process on a <111> SOI wafer. This fabrication method solves the problem of the footing phenomenon in the conventional SOI process for improved manufacturability and performance. The roughened lower parts as well as the loose silicon fragments due to the footing phenomenon are removed by the alkaline lateral etching step of the SBM process. The fabricated accelerometer has a demodulated signal-to-noise ratio of 92 dB, when 40Hz, 5 g input acceleration is applied. The noise equivalent input acceleration resolution and bandwidth are $125.59\;{\mu}g$ and over 100 Hz, respectively. The acceleration random walk is $12.5\;{\mu}g/\sqrt{Hz}$. The output linearity is measured to be 1.2 % FSO(Full Scale Output) at 40 Hz, and the input range is over ${\pm}\;10g$.

  • PDF

Piezoresistive-Structural Coupled-Field Analysis and Optimal Design for a High Impact Microaccelerometer (고충격 미소가속도계의 압저항-구조 연성해석 및 최적설계)

  • Han, Jeong-Sam;Kwon, Soon-Jae;Ko, Jong-Soo;Han, Ki-Ho;Park, Hyo-Hwan;Lee, Jang-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.132-138
    • /
    • 2011
  • A micromachined silicon accelerometer capable of surviving and detecting very high accelerations(up to 200,000 times the gravitational acceleration) is necessary for a high impact accelerometer for earth-penetration weapons applications. We adopted as a reference model a piezoresistive type silicon micromachined high-shock accelerometer with a bonded hinge structure and performed structural analyses such as stress, modal, and transient dynamic responses and sensor sensitivity simulation for the selected device using piezoresistive-structural coupled-field analysis. In addition, structural optimization was introduced to improve the performances of the accelerometer against the initial design of the reference model. The design objective here was to maximize the sensor sensitivity subject to a set of design constraints on the impact endurance of the structure, dynamic characteristics, the fundamental frequency and the transverse sensitivities by changing the dimensions of the width, sensing beams, and hinges which have significant effects on the performances. Through the optimization, we could increase the sensor sensitivity by more than 70% from the initial value of $0.267{\mu}V/G$ satisfying all the imposed design constraints. The suggested simulation and optimization have been proved very successful to design high impact microaccelerometers and therefore can be easily applied to develop and improve other piezoresistive type sensors and actuators.