• Title/Summary/Keyword: microCT

Search Result 426, Processing Time 0.028 seconds

MicroRNAs and Metastasis-related Gene Expression in Egyptian Breast Cancer Patients

  • Hafez, Mohamed M.;Hassan, Zeinab K.;Zekri, Abdel Rahman N.;Gaber, Ayman A.;Rejaie, Salem S. Al;Sayed-Ahmed, Mohamed M.;Shabanah, Othman Al
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.591-598
    • /
    • 2012
  • Aim and background: MicroRNAs (miRNAs) are a class of naturally occurring small noncoding RNAs that regulate gene expression, cell growth, differentiation and apoptosis by targeting mRNAs for translational repression or cleavage. The present study was conducted to study miRNAs in Egyptian breast cancer (BC) and their relation to metastasis, tumor invasion and apoptosis in addition to their association with the ER and PR statuses. Methods: Real Time RT-PCR was performed to identify the miRNA expression level of eight miRNAs and eight metastatic-related genes in 40 breast cancer samples and their adjacent non-neoplastic tissues. The expression levels of each miRNA relative to U6 RNA were determined using the $^{2-{\Delta}}CT$ method. Also, miRNA expression profiles of the BC and their corresponding ANT were evaluated. Results: The BC patients showed an up-regulation in miRNAs (mir-155, mir-10, mir-21 and mir-373) with an upregulation in MMP2, MMp9 and VEGF genes. We found down regulation in mir-17p, mir-126, mir-335, mir-30b and also TIMP3, TMP1 and PDCD4 genes in the cancer tissue compared to the adjacent non-neoplastic tissues. Mir -10b, mir -21, mir-155 and mir373 and the metastatic genes MMP2, MMP9 and VEGF were significantly associated with an increase in tumor size (P < 0.05). No significant difference was observed between any of the studied miRNAs regarding lymph node metastasis. Mir-21 was significantly over-expressed in ER-/PR-cases. Conclusion: Specific miRNAs (mir-10, mir-21, mir-155, mir-373, mir-30b, mir-126, mir-17p, mir-335) are associated with tumor metastasis and other clinical characteristics for BC, facilitating identification of individuals who are at risk.

Relationship between trabecular strength and three-dimensional architecture in the pig mandible using microcomputed tomography (돼지 하악골의 micro-CT영상에서 추출한 3차원 골미세구조와 골강도 사이의 상관관계)

  • Huh Kyung-Hoe;Park Moo-Soon;Yi Won-Jin;Heo Min-Suk;Lee Sam-Sun;Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.35 no.3
    • /
    • pp.167-173
    • /
    • 2005
  • Purpose : To investigate the relationship between three-dimensional (3D) bone imaging parameters and trabecular strength in the mandible. Materials and Methods : Bone specimens were obtained from the mandibles of five male pigs weighing around 110 kg each. Of those, 43 samples were selected for 3D analysis and measured by micro-computed tomography. The five morphometric parameters were trabecular thickness (Tb.Th), bone specific surface (BS/BV), percent bone volume (BV/TV), structure model index (SMI) and degree of anisotropy (DA). Through destructive mechanical testing, strength parameters were obtained. Results : BV/TV, SMI, BS/BV, and Tb.Th showed significant correlations with strength parameters. DA did not show any correlation with the other parameters. In multiple linear regression analysis, BV/TV alone explained $43\%$ of the variance in Young's modulus. By stepwise inclusion of SMI, the variance in the Young's modulus was better explained up to $52\%$. Conclusions : Predicting trabecular strength in the mandible through architectural analysis would be possible. Further study is needed to establish the tendency and variety of trabecular architecture and strength according to the locations within the mandible.

  • PDF

Development of Multi-Body Dynamics Simulator for Bio-Mimetic Motion in Lizard Robot Design (도마뱀 로봇 설계를 위한 생체운동 모사 다물체 동역학 시뮬레이터 개발)

  • Park, Yong-Ik;Seo, Bong Cheol;Kim, Sung-Soo;Shin, Hocheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.585-592
    • /
    • 2014
  • In this study, a multibody simulator was developed to analyze the bio-mimetic motion of a lizard robot design. A RecurDyn multibody dynamics model of a lizard was created using a micro-computerized tomography scan and motion capture data. The bio-mimetic motion simulator consisted of a trajectory generator, an inverse kinematics module, and an inverse dynamics module, which were used for various walking motion analyses of the developed lizard model. The trajectory generation module produces spinal movements and gait trajectories based on the lizard's speed. Using the joint angle history from an inverse kinematic analysis, an inverse dynamic analysis can be carried out, and the required joint torques can be obtained for the lizard robot design. In order to investigate the effectiveness of the developed simulator, the required joint torques of the model were calculated using the simulator.

The Effects of Partial Vibration on Tibia of Osteoporosis Induced Rat (골다공증이 유발된 쥐 정강이뼈에 적용한 부분 진동자극 효과)

  • Park, Ji-Hyung;Seo, Dong-Hyun;Jung, Young-Jin;Ko, Chang-Yong;Kim, Han-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.5
    • /
    • pp.578-583
    • /
    • 2012
  • The pharmacological therapies and whole body vibration as non-pharmacological therapies were known to have adverse side effects. Therefore, partial stimulation was suggested and its effects were evaluated. This study aimed to evaluate the site-specific effects of partial stimulator for treatment of osteoporosis induced by estrogen deficiency. Sixteen virginal Sprague-Dawley rats (12 weeks old) were divided into 2 groups(no stimulation, stimulation groups). All rats were ovariectomised to induce osteoporosis. After 3 weeks of operation, the right tibiae in rats of stimulation group (frequency: 10Hz, cycle: 1500, strain on bone surface: $2000{\mu}{\varepsilon}$) were stimulated perpendicularly at right tibia by using partial stimulator for 6 weeks (3days/week). The right tibiae in rats were scanned, before stimulation (0 week) and at 6 weeks after stimulation by using in-vivo micro computed tomography. For investigation of changes in morphological characteristics, structural parameters were measured and calculated. At 6 weeks the morphological characteristics (relative value) in stimulation group were significantly enhanced than those in no stimulation group (p<0.05). In this study, we find that after 6 weeks of partial stimulation, the morphological characteristics of tibia trabecular bone were enhanced. Thus, we concluded that partial stimulation could be used to treat osteoporosis.

The Effects of Whole Body Vibration in the Aspect of Reducing Abdominal Adipose Tissue in High-Fat Diet Mice Model (고지방 식이 섭취 소동물 모델을 활용한 전신진동 자극의 복부 지방 감소 효능 평가)

  • Hwang, Donghyun;Kim, Seohyun;Lee, Hana;lee, Sangyeob;Seo, Donghyun;Cho, Seungkwan;Chen, Seulgi;Han, Taeyoung;Kim, Han Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • The prevalence of obesity has noticeably increased worldwide over several decades with various complication. Even though anti-obesity drug treatments have been spotlighted by resulting in effective mean weight losses, its adverse effects cannot be overlooked. Thus, this study aimed to evaluate the effects of multi-frequency whole body vibration, one of the mechanical stimulus, as a countermeasure against obesity. Thirty-two-6-week-old C57BL/6J male mice were equally assigned to four groups: the Control group (CON, n = 8), the Sham group (Sham, n = 8), the sham with single frequency whole body vibration (S+V, n = 8), and the sham with multi frequency whole body vibration (S+MV, n = 8). After 4 weeks, morphologic changes in the adipose tissue were evaluated from three-dimensional images using in vivo micro-computed tomography. At 4 weeks, the volume of the abdominal adipose tissue, which had the highest value in Sham group, noticeably reduced in S+MV group compared to it in S+V group. These results implied that the accumulation of abdominal adipose tissue can be effectively reduced through applying multi-frequency whole body vibration.

Effect of bite force on orthodontic mini-implants in the molar region: Finite element analysis

  • Lee, Hyeon-Jung;Lee, Kyung-Sook;Kim, Min-Ji;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.43 no.5
    • /
    • pp.218-224
    • /
    • 2013
  • Objective: To examine the effect of bite force on the displacement and stress distribution of orthodontic mini-implants (OMIs) in the molar region according to placement site, insertion angle, and loading direction. Methods: Five finite element models were created using micro-computed tomography (microCT) images of the maxilla and mandible. OMIs were placed at one maxillary and two mandibular positions: between the maxillary second premolar and first molar, between the mandibular second premolar and first molar, and between the mandibular first and second molars. The OMIs were inserted at angles of $45^{\circ}$ and $90^{\circ}$ to the buccal surface of the cortical bone. A bite force of 25 kg was applied to the 10 occlusal contact points of the second premolar, first molar, and second molar. The loading directions were $0^{\circ}$, $5^{\circ}$, and $10^{\circ}$ to the long axis of the tooth. Results: With regard to placement site, the displacement and stress were greatest for the OMI placed between the mandibular first molar and second molar, and smallest for the OMI placed between the maxillary second premolar and first molar. In the mandibular molar region, the angled OMI showed slightly less displacement than the OMI placed at $90^{\circ}$. The maximum Von Mises stress increased with the inclination of the loading direction. Conclusions: These results suggest that placement of OMIs between the second premolar and first molar at $45^{\circ}$ to the cortical bone reduces the effect of bite force on OMIs.

STUDY OF MAXILLARY CORTICAL BONE THICKNESS FOR SKELETAL ANCHORAGE SYSTEM IN KOREAN (Skeletal Anchorage System의 식립을 위한 한국인 악골의 피질골 두께에 대한 연구)

  • Kim, Ji-Hyuck;Joo, Jae-Yong;Park, Young-Wook;Cha, Bong-Kuen;Kim, Soung-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.4
    • /
    • pp.249-255
    • /
    • 2002
  • Recently, Skeletal Anchorage System (SAS) has been focused clinically with the view point that it could provide the absolute intraoral anchorage. First, it began to be used for the patient of orthognathic surgery who had difficulty in taking intermaxillary fixation due to multiple loss of teeth. And then, its uses have been extended to many cases, the control of bone segments after orthognathic surgery, stable anchorage in orthodontic treatment, and anchorage for temporary prosthesis and so on. SAS has been developed as dental implants technique has been developed and also called in several names; mini-screw anchorage, micro-screw anchorage, mini-implant anchorage, micro-implant anchorage (MIA), and orthosystem implant etc. Now many clinicians use SAS, but the anatomical knowledges for the installed depth of intraosseous screws are totally dependent on general experiences. So we try to study for the cortical thickness of maxilla and mandible in Korean adults without any pathologic conditions with the use of Computed Tomography at the representative sites for the screw installation.

The Effect of Sintongchukea-tang (Shentongzhuyu-tang) on Bone Fusion in Rib Fractured Rats (신통축어탕(身痛逐瘀湯)이 늑골골절 유발 Rat의 골유합에 미치는 영향)

  • Nam, Dae-Jin;Oh, Min-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.30 no.3
    • /
    • pp.1-21
    • /
    • 2020
  • Objectives This study was designed to evaluate the bone regeneration effects of Sintongchukea-tang (SC) on rib fractured rats. Methods Rats were randomly divided into 5 groups (normal, control, positive control, SC low [SC-L] and SC high [SC-H]). All groups were subject to fractured rib except normal group. Normal group received no treatment at all. Control group was orally fed with phosphate buffered saline, and positive control group was medicated with tramadol (20 mg/kg). SC group was orally medicated with SC (50 mg/kg, 100 mg/kg) once a day for 14 days. The fracture healing process was observed by x-ray, micro CT and fracture tissue slide was observed by immunohistochemical staining. We analysed levels of transforming growth factor-β1, Ki67, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), receptor activator of nuclear factor kappa-β, tartrate resistant acid phosphatase (TRAP) and analysed levels of Osteocalcin in plasma. We measured levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), ALP, blood urea nitrogen (BUN) and creatinine in plasma, for hepatotoxicity and nephrotoxicity of SC. Results Though X-ray and micro-computed tomography, more callus formation was observed and bone union was progressing. Through Hematoxylin and Eosin, callus formation was increased compared to the control group. Runx2 level at SC-H was significantly increased and TRAP level at SC-L was significantly decreased compared with the control group. AST, ALT, ALP, BUN and creatinine were not statistically different from the control group. Conclusions As described above, SC promoted fracture healing by stimulating the bone regeneration factor. And SC shows no hepatotoxicity and nephrotoxicity. In conclusion, it seems that SC helps to promote fracture regeneration and it can be used clinically to patients with fracture.

Associations Between Three Common MicroRNA Polymorphisms and Hepatocellular Carcinoma Risk in Chinese

  • Hao, Yu-Xia;Wang, Jun-Ping;Zhao, Long-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6601-6604
    • /
    • 2013
  • Aim: Associations between polymorphisms in miR-146aG>C, miR-196a2C>T and miR-499A>G and risk of HCC, and interaction with HBV infection in a Chinese population, were the target of the present research. Methods: The duplex polymerase-chain-reaction with confronting-two-pair primers (PCR-RFLP) was performed to determine the genotypes of the miR-146aG>C, miR-196a2C>T and miR-499A>G genotypes. Associations of polymorphisms with the risk of HCC were estimated by conditional logistic regression analysis. Results: Drinking, family history of cancer, HBsAg and HCV were risk factors for HCC. Multivariate regression analyses showed that subjects carrying the miR-196a2 CC genotype had significantly increased risk of HCC, with an adjusted OR (95% CI) of 2.18 (1.23-3.80). In addition, cases carrying the miR-196a2 C allele had a 1.64-fold increase in the risk for HCC (95%CI=1.03-2.49). The miR-196a2 CT and TT genotypes greatly significantly increased the risk of HCC in subjects with HBV infection, with adjusted ORs (95% CI) of 2.02 (1.12-3.68) and 2.69 (1.28-5.71), respectively. Conclusion: Our results demonstrate that miR-196a2 CC genotype and C allele have an important role in HCC risk in Chinese, especially in patients with HBV infection.

Experimental Study on Deformation and Failure Behavior of Limestones under Dynamic Loadings (동적하중 하에서 석회암의 변형 및 파괴거동에 관한 실험적 연구)

  • Kang, Myoung-Soo;Kang, Hyeong-Min;Kim, Seung-Kon;Cheon, Dae-Sung;Kaneko, Katsuhiko;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.339-345
    • /
    • 2012
  • Information on the deformation behavior and fracture strength of rocks subjected to dynamic loadings is important to stability analyses of underground openings underground vibration due to rock blasts, earthquakes and rock bursts. In this study, Split Hopkinson Pressure Bar (SHPB) system was applied to estimate dynamic compressive and tensile fracture strengths of limestone and also examine deformation behavior of limestones under dynamic loadings. A micro-focus X-ray CT scanner was used to observe non-destructively inside the impacted limestone specimens. From the dynamic tests, it was revealed that the limestone have over 140MPa dynamic compressive strength and the strain-rate dependency of the strength. Dynamic Brazilian tensile strength of the limestone exceeds 21MPa and shows over 3 times static Brazilian tensile strength.