• Title/Summary/Keyword: micro-wave tool

Search Result 22, Processing Time 0.036 seconds

Welding Characteristics of Inconel 600 using a high power CW Nd:YAG Laser (고출력 CW Nd:YAG 레이저를 이용한 인코넬 600의 용접 특성)

  • Yoo Young-Tae;Shin Ho-Jun;Lim Kie-Gon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.119-126
    • /
    • 2004
  • The welding characteristics of Inconel 600 Alloy using a continuous wave Nd:YAG laser are experimentally investigated. The major process parameters studied in the present laser welding experiment were the positions of focus, laser power and travel speed of laser bean We measured the fusion zone size and its shape using an optical microscope for the observation of cross-sectional area. We performed two tests regarding the tension and the micro hardness for welding quality estimation. Then we measured residual stress in welds by electronic speckle pattern interferometry(ESPI). In conclusion the optimum butt welding process parameters were 0.5mm focus position, 1.6kW laser power, 1m/min travel speed and 5.5$\ell$/min assist gas discharge.

Automated Inspection System for Micro-pattern Defection Using Artificial Intelligence (인공지능(AI)을 활용한 미세패턴 불량도 자동화 검사 시스템)

  • Lee, Kwan-Soo;Kim, Jae-U;Cho, Su-Chan;Shin, Bo-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.729-735
    • /
    • 2021
  • Recently Artificial Intelligence(AI) has been developed and used in various fields. Especially AI recognition technology can perceive and distinguish images so it should plays a significant role in quality inspection process. For stability of autonomous driving technology, semiconductors inside automobiles must be protected from external electromagnetic wave(EM wave). As a shield film, a thin polymeric material with hole shaped micro-patterns created by a laser processing could be used for the protection. The shielding efficiency of the film can be increased by the hole structure with appropriate pitch and size. However, since the sensitivity of micro-machining for some parameters, the shape of every single hole can not be same, even it is possible to make defective patterns during process. And it is absolutely time consuming way to inspect all patterns by just using optical microscope. In this paper, we introduce a AI inspection system which is based on web site AI tool. And we evaluate the usefulness of AI model by calculate Area Under ROC curve(Receiver Operating Characteristics). The AI system can classify the micro-patterns into normal or abnormal ones displaying the text of the result on real-time images and save them as image files respectively. Furthermore, pressing the running button, the Hardware of robot arm with two Arduino motors move the film on the optical microscopy stage in order for raster scanning. So this AI system can inspect the entire micro-patterns of a film automatically. If our system could collect much more identified data, it is believed that this system should be a more precise and accurate process for the efficiency of the AI inspection. Also this one could be applied to image-based inspection process of other products.

A Study on Corrective Polishing Using a Small Flat Type Polisher (소형 평면공구를 이용한 형상수정 폴리싱에 관한 연구)

  • Kim, Eui-Jung;Shin, Keun-Ha
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.99-106
    • /
    • 2002
  • For the development of a ultra-precision CNC polishing system including on-machine measurement system, we study a corrective polishing algorithm. We calculated unit removal profiles for various flat type polishing tools and polishing tool positions. Using these results we simulate the corrective polishing process based on dwell time control. We calculate dwell time distributions and residual error of the polishing simulation method and the FFT calculation method. We test corrective polishing algorithm with an optical glass. The target removal shape is a sine wave that has amplitude 0.3 micro meters. We find this polishing process has a machining resolution of nanometer order and is effective for sub-micrometer order machining. This result will be used for the software development of the CNC polishing system.

Pulsed laser surface modification for heat treatment and nano-texturing on biometal surface

  • Jeon, Hojeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.118.1-118.1
    • /
    • 2016
  • The laser surface modification has been reported for its functional applications for improving tribological performance, wear resistance, hardness, and corrosion property. In most of these applications, continuous wave lasers and pulsed lasers were used for surface melting, cladding, alloying. Since flexibility in processing, refinement of microstructure and controlling the surface properties, technology utilizing lasers has been used in a number of fields. Especially, femtosecond laser has great benefits compared with other lasers because its pulsed width is much shorter than characteristic time of thermal diffusion, which leads to diminish heat affected zone. Moreover, laser surface engineering has been highlighted as an effective tool for micro/nano structuring of materials in the bio application field. In this study, we applied femtosecond and nanosecond pulsed laser to treat biometals, such as Mg, Mg alloy, and NiTi alloy, by heating to improve corrosion properties and functionalize their surface controlling cell response as implantable biomedical devices.

  • PDF

A study on Corrective Polishing (형상수정 폴리싱에 관한 연구)

  • 김의중;신근하
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.950-955
    • /
    • 2001
  • For the development of an ultra-precision CNC polishing system including on-machine measurement system, we study a corrective polishing algorithm. We analyze and test the unit removal profiles for a ball type polishing tool. Using these results we calculate dwell time distributions and residual errors for a target removal shape. We use the polishing simulation method and feed rate calculation method for the dwell time calculation. We test corrective polishing algorithm with an optical glass. The target removal shape is a sine wave that has amplitude 0.3 micro meters. We find this polishing process has a machining resolution of nanometer order and is effective for sub-micrometer order machining. This result will be used for the software development of the CNC polishing system.

  • PDF

Modern Laser Technology and Metallurgical Study on Laser Materials Processing

  • Kutsuna, Muneharu
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.561-569
    • /
    • 2002
  • Laser has been called a "Quantum Machine" because of its mechanism of generation since the development on July 7,1960.by T.H.Maiman. We can now use this machine as a tool for manufacturing in industries. At present, 45kW CO2 laser, 10kW Nd:YAG laser, 6kW LD pumped YAG laser and 4kW direct diode laser facilities are available for welding a heavy steel plate of 40mm in thickness and for cutting metals at high speed of 140m/min. Laser Materials Processing is no longer a scientific curiosity but a modern tool in industries. Lasers in manufacturing sector are currently used in welding, cutting, drilling, cladding, marking, cleaning, micro-machining and forming. Recently, high power laser diode, 10kW LD pumped YAG laser, 700W fiber laser and excimer laser have been developed in the industrialized countries. As a result of large numbers of research and developments, the modem laser materials processing has been realized and used in all kinds of industries now. In the present paper, metallurgical studies on laser materials processing such as porosity formation, hot cracking and the joint performances of steels and aluminum alloys and dissimilar joint are discussed after the introduction of laser facilities and laser applications in industries such as automotive industry, electronics industry, and steel making industry. The wave towards the use of laser materials processing and its penetration into many industries has started in many countries now. Especially, development of high power/quality diode laser will be accelerate the introduction of this magnificent tool, because of the high efficiency of about 50%, long life time and compact.

  • PDF

Fabrication of Glass Microstructure Using Laser-Induced Backside Wet Etching (레이저 습식 후면 식각공정을 이용한 미세 유리 구조물 제작)

  • Kim, Bo Sung;Park, Min Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.967-972
    • /
    • 2014
  • The good light permeability and hardness of glass allow it to be used in various fields. Non-conventional machining methods have been used for glass machining because of its brittle properties. As one non-contact machining method, a laser has advantages that include a high machining speed and the fact that no tool making is required. However, glass has light permeability. Thus, the use of a laser to machine glass has limitations. A nanosecond pulse laser can be used at low power for laser-induced backside wet etching, which is an indirect method. In previous studies, a short-wave laser that had good light absorption but a high price was used. In this study, a near-infrared laser was used to test the possibility of glass micro-machining. In particular, when deeper machining was conducted on a glass structure, more problems could result. To solve these problems, microstructure manufacturing was conducted using ultrasonic vibration.

Optical Tracking of Three-Dimensional Brownian Motion of Nanoparticles

  • Choi C. K.;Kihm K.D.
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.3-19
    • /
    • 2005
  • Novel optical techniques are presented for three-dimensional tracking of nanoparticles; Optical Serial Sectioning Microscopy (OSSM) and Ratiometric Total Internal Reflection Fluorescent Microscopy (R-TIRFM). OSSM measures optically diffracted particle images, the so-called Point Spread Function (PSF), and dotermines the defocusing or line-of-sight location of the imaged particle measured from the focal plane. The line-of-sight Brownian motion detection using the OSSM technique is proposed in lieu of the more cumbersome two-dimensional Brownian motion tracking on the imaging plane as a potentially more effective tool to nonintrusively map the temperature fields for nanoparticle suspension fluids. On the other hand, R-TIRFM is presented to experimentally examine the classic theory on the near-wall hindered Brownian diffusive motion. An evanescent wave field from the total internal reflection of a 488-nm bandwidth of an argon-ion laser is used to provide a thin illumination field of an order of a few hundred nanometers from the wall. The experimental results show good agreement with the lateral hindrance theory, but show discrepancies from the normal hindrance theory. It is conjectured that the discrepancies can be attributed to the additional hindering effects, including electrostatic and electro-osmotic interactions between the negatively charged tracer particles and the glass surface.

  • PDF

Use of Ultrasonic beam transmissivity for investigating the structural features in plastic pipe cased borehole (초음파의 매질 투과성을 이용한 시추공 케이싱 배면의 암상 및 절리구조 조사 연구)

  • 김중열;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.751-758
    • /
    • 2002
  • Boreholes that are drilled in soft or unconsolidated materials such as gravels and coals are prone to collapse. To maintain the hole, some kinds of casing pipes are needed. If thereby a plastic pipe e.g. PVC is used for the casing, Televiewer tool is still capable of detecting structural features such as fractures in the borehole wall behind the pipe, whereas other borehole-imaging logging devices such as BIPS (Borehole Image Processing System) and FMS(Formation Micro Scanner) won't provide any information about that. Televiewer's primary component is a piezoelectric transducer centered in the hole. It acts as both a transmitter and receiver, and sends an ultrasonic beam. That is reflected, in the same manner as the seismic wave propagation, from the both sides(inner and outer surfaces) of the casing pipe, transmits through the pipe and then reflected from the borehole wall. With an appropriate choice of time-windowing, it is possible to capture the returning signals from both the borehole wall and the outer side of casing pipe as well. A suite of laboratory tests were performed on various physical models composed of plastic pipes with different diameters. Although the amplitudes of returning signals were reduced to about half the usual value due to the transmission loss, the dynamic range of Televiewer tool was sufficient to observe the structural features behind the casing pipe. Besides, several representative case studies at various research areas in our country are presented. The results demonstrate the usefulness of the transmissivity of Televiewer acoustic km, which will assist in further structural interpretation.

  • PDF

Comparison of Preference for Convenience and Dietary Attitude in College Students by Sex in Seoul and Kyunggi-do Area (일부 남.녀 대학생들의 편의식에 대한 기호도와 식태도에 관한 비교)

  • Im, Yeong-Suk;Park, Hye-Ryeon;Han, Gwi-Jeong
    • Journal of the Korean Dietetic Association
    • /
    • v.11 no.1
    • /
    • pp.11-20
    • /
    • 2005
  • This study was conducted to investigate preference for convenience food and dietary attitude in college students in Seoul and Kyunggi-do area. This study used a questionnaires as instrument tool. Thequestionnaire consisted of socio-demographic characteristics of the subjects, the valuation of preference for convenience, the concern of nutrition, and the dietary attitude. The subject were 199 males and 137 females. The mean age of subjects was 22.4$\pm$2.3year. The results have been summarized as follows Male students preferred more convenience food than females. Male students liked chicken, ice cream, ramyeon, pizza·hamburgerandfemalestudentslikedchicken,pizza, ice cream, ramyeon·hamburger. The kinds of convenience foods for a substitute meal were ramyeon, hamburger, bread, potato in male group and female group had frequently ramyeon, hamburger, bread, rice cake for a substitute meal. Male students were more likely to eat ramyeon (p<0.01) and purchased sabalmyeon The subjects used to purchase sabalmyeon as main convenience food at convenient store The score of preference for convenience food in male group was higher than female group. The score of attitude toward balanced diet in female group was higher than male group(p<0.01). In scores of concern for nutrition information, balanced diet, and nutrition knowledge, Female group had higher scores of concern for nutrition information, balanced diet, and nutrition knowledge than that of male group (p<0.01).There was no significant difference in the degree of preference for packing types, however, Male group tended to prefer more micro wave type than female group. The persons to affect the consumption of convenience food were friends. There was no significant difference in the time of purchase convenience food, however, Male tended to purchase convenience food at the time of snack than female group. As a results, proper nutritional education and qualitative development of convenience food are required in order to improve the consuming attitude of consumers and their preference for convenience food.

  • PDF