• Title/Summary/Keyword: micro-seismic data

Search Result 21, Processing Time 0.026 seconds

Micro-seismic monitoring in mines based on cross wavelet transform

  • Huang, Linqi;Hao, Hong;Li, Xibing;Li, Jun
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1143-1164
    • /
    • 2016
  • Time Delay of Arrival (TDOA) estimation methods based on correlation function analysis play an important role in the micro-seismic event monitoring. It makes full use of the similarity in the recorded signals that are from the same source. However, those methods are subjected to the noise effect, particularly when the global similarity of the signals is low. This paper proposes a new approach for micro-seismic monitoring based on cross wavelet transform. The cross wavelet transform is utilized to analyse the measured signals under micro-seismic events, and the cross wavelet power spectrum is used to measure the similarity of two signals in a multi-scale dimension and subsequently identify TDOA. The offset time instant associated with the maximum cross wavelet transform spectrum power is identified as TDOA, and then the location of micro-seismic event can be identified. Individual and statistical identification tests are performed with measurement data from an in-field mine. Experimental studies demonstrate that the proposed approach significantly improves the robustness and accuracy of micro-seismic source locating in mines compared to several existing methods, such as the cross-correlation, multi-correlation, STA/LTA and Kurtosis methods.

Principal component analysis based frequency-time feature extraction for seismic wave classification (지진파 분류를 위한 주성분 기반 주파수-시간 특징 추출)

  • Min, Jeongki;Kim, Gwantea;Ku, Bonhwa;Lee, Jimin;Ahn, Jaekwang;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.687-696
    • /
    • 2019
  • Conventional feature of seismic classification focuses on strong seismic classification, while it is not suitable for classifying micro-seismic waves. We propose a feature extraction method based on histogram and Principal Component Analysis (PCA) in frequency-time space suitable for classifying seismic waves including strong, micro, and artificial seismic waves, as well as noise classification. The proposed method essentially employs histogram and PCA based features by concatenating the frequency and time information for binary classification which consist strong-micro-artificial/noise and micro/noise and micro/artificial seismic waves. Based on the recent earthquake data from 2017 to 2018, effectiveness of the proposed feature extraction method is demonstrated by comparing it with existing methods.

SEISMIC MONITORING IN SURFACE MINES

  • Ajay Kumar, L.;David Raj, D. Edwin;Renaldy, T. Amrith;Vinoth, S.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.174-180
    • /
    • 2009
  • This paper gives a brief review of seismicity and seismic monitoring in surface mines. A summary of various researches related to seismicity is presented. Our research focuses on the understanding of seismicity and the application of analytical techniques to seismicity. Seismic monitoring plays an important role in the identification of potential failure planes and thereby predict potential failures. Much of the instrumentation used in our research is derived from earthquake monitoring systems. The major aspects in seismic monitoring are an instrumentation used, size of the network and data acquisition systems. Seismic monitoring in surface mines could be successfully applied to the improvement of safety standards in slope stability.

Deep Convolutional Neural Network with Bottleneck Structure using Raw Seismic Waveform for Earthquake Classification

  • Ku, Bon-Hwa;Kim, Gwan-Tae;Min, Jeong-Ki;Ko, Hanseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • In this paper, we propose deep convolutional neural network(CNN) with bottleneck structure which improves the performance of earthquake classification. In order to address all possible forms of earthquakes including micro-earthquakes and artificial-earthquakes as well as large earthquakes, we need a representation and classifier that can effectively discriminate seismic waveforms in adverse conditions. In particular, to robustly classify seismic waveforms even in low snr, a deep CNN with 1x1 convolution bottleneck structure is proposed in raw seismic waveforms. The representative experimental results show that the proposed method is effective for noisy seismic waveforms and outperforms the previous state-of-the art methods on domestic earthquake database.

Seismic Noise Reduction Using Micro-Site Array Stacking (미소-위치 배열 중합을 이용한 지진파의 잡음제거)

  • Choi, Hun;Sohn, Sang-Wook;Bae, Hyeon-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.395-403
    • /
    • 2014
  • This paper presents a new approach to improve the signal to noise ratio (SNR) for local seismic disaster preventing system in densely populated area. The seismic data measured in the local site includes various sensing noises (offset or measurement noise) and man-made/natural noises (road and rail traffic noise, rotating or hammering machinery noise, human activity noise such as walking and running, wind/atmospheric pressure-generated noise, etc.). These additive noises are different in time and frequency characters. The proposed method uses 3-stages processing to reduce these different additive noises. In the first stage, misalignment offset noise are diminished by time average processing, and then the second and third stages, coherent/incoherent noises such as man-made/natural noises are suppressed by array stacking. In addition, we derived the theoretical equation of the SNR gain improved by the proposed method. To evaluate the performance of the proposed method, computer simulations were performed with real seismic data and test equipment generated data as the input.

Technical Consideration for Production Data Analysis with Transient Flow Data on Shale Gas Well (셰일가스정 천이유동 생산자료분석의 기술적 고려사항)

  • Han, Dong-kwon;Kwon, Sun-il
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2016
  • This paper presents development of an appropriate procedure and flow chart to analyze shale gas production data obtained from a multi-fractured horizontal well according to flow characteristics in order to calculate an estimated ultimate recovery. Also, the technical considerations were proposed when a rate transient analysis was performed with field production data occurred to only $1^{st}$ transient flow. If production data show the $1^{st}$ transient flow from log-log and square root time plot analysis, production forecasting must be performed by applying different method as before and after of the end of $1^{st}$ linear flow. It is estimated by an area of stimulated reservoir volume which can be calculated from analysis results of micro-seismic data. If there are no bottomhole pressure data or micro-seismic data, an empirical decline curve method can be used to forecast production performance. If production period is relatively short, an accuracy of production data analysis could be improved by analyzing except the early production data, if it is necessary, after evaluating appropriation with near well data. Also, because over- or under-estimation for stimulated reservoir volume could take place according to analysis method or analyzer's own mind, it is necessary to recalculate it with fracture modeling, reservoir simulation and rate transient analysis, if it is necessary, after adequacy evaluation for fracture stage, injection volume of fracture fluid and productivity of producers.

Analysis of Seismicity by Observation of micro-earthquakes in the Central Region of South Korea (남한 중부지역의 미소지진관측에 의한 지진활동 분석)

  • Kyung, Jai-Bok;Chung, Tae-Woong;Lee, Duk-Ki;Lee, Jae-Gu;Lee, Eun-A
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.3
    • /
    • pp.201-212
    • /
    • 2000
  • Recent seismicity of the central region of South Korea is investigated by using the micro-earthquake data recorded at the seismic network of KNUE(Korea National University of Education) since December, 1997. About two earthquakes are observed each month, which indicates relatively low seismic activities of the region, without showing any temporal characteristics of seismicity. The b-value of the region obtained from the data we used is found to be about 1.15. The epicenters of the micro-earthquakes are mostly located in the Okchon Zone, especially around Munkyong area, Poeun-Sokri Mt.-Youngdong area, and Kunsan-Nonsan area.

  • PDF

System identification of soil behavior from vertical seismic arrays

  • Glaser, Steven D.;Ni, Sheng-Huoo;Ko, Chi-Chih
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.727-740
    • /
    • 2008
  • A down hole vertical seismic array is a sequence of instruments installed at various depths in the earth to record the ground motion at multiple points during an earthquake. Numerous studies demonstrate the unique utility of vertical seismic arrays for studying in situ site response and soil behavior. Examples are given of analyses made at two sites to show the value of data from vertical seismic arrays. The sites examined are the Lotung, Taiwan SMART1 array and a new site installed at Jingliao, Taiwan. Details of the installation of the Jingliao array are given. ARX models are theoretically the correct process models for vertical wave propagation in the layered earth, and are used to linearly map deeper sensor input signals to shallower sensor output signals. An example of Event 16 at the Lotung array is given. This same data, when examined in detail with a Bayesian inference model, can also be explained by nonlinear filters yielding commonly accepted soil degradation curves. Results from applying an ARMAX model to data from the Jingliao vertical seismic array are presented. Estimates of inter-transducer soil increment resonant frequency, shear modulus, and damping ratio are presented. The shear modulus varied from 50 to 150 MPa, and damping ratio between 8% and 15%. A new hardware monitoring system - TerraScope - is an affordable 4-D down-hole seismic monitoring system based on independent, microprocessor-controlled sensor Pods. The Pods are nominally 50 mm in diameter, and about 120 mm long. An internal 16-bit micro-controller oversees all aspects of instrumentation, eight programmable gain amplifiers, and local signal storage.

Effect of Reinforcement Details on the Seismic Performance of Precast HPFRCC Coupling Beams (보강상세에 따른 프리캐스트 HPFRCC 커플링 보의 내진성능)

  • Kim Sun Woo;Yun Hyun Do;Park Wan Shin;Jeon Esther
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.81-84
    • /
    • 2005
  • In order to effectively resist seismic loads, coupling beams must be sufficiently stiff, strong and posses a stable load-deflection hysteretic response. This paper reports experimental data on the seismic performance of precast HPFRCC coupling beams with variable details. Precast HPFRCC coupling beam was tested to evaluate their failure modes. shear behavior, micro crack pattern and energy dissipation. Based on the experimental results, precast coupling beam with diagonal and rhombic details offer greater performance and ductility than coupling beam with normal detail.

  • PDF

Interpretation of Gravity, Magnetic and High-resolution (3.5 kHz) Seismic Data in the Powell Basin, Antarctica (남극 파월분지 지역의 중,자력 및 고해상 (3.5 KHZ) 탄성파 자료 해석)

  • Jin, YoungKeun;Kim, KyuJung;Nam, SangHeon;Kim, YeaDong;Lee, JooHan
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Gravity, magnetic and high-resolution seismic surveys were carried out in the Powell Basin to examine tectonic structure and recent sedimentation on Dec. 2002. The trend of negative gravity anomalies along the spreading axis of the Powell Basin changes from northwest to east-west toward south. Both boundaries of the basin with the Antarctic Peninsula and the South Orkey micro-continent show negative magnetic anomalies, which indicates that the boundaries were continental rift areas in the initial stage of spreading. Magnitude of the magnetic anomalies corresponding to the axis of the basin is rather small compared to those of normal spreading axises in other regions. Such small anomalies would be caused by reduction of magnetic strength of oceanic crust below thick sediments due to thermal alternation. High-resolution (3.5 kHz) seismic profiles reveal that top of the South Scotia Ridge is a flat terrain coverd with thin coarse sediments by glacial erosion. Thick oceanic sediments are deposited in the central part of the basin. Little deformation in the oceanic sediments indicates that the Powell Basin has been in stable tectonic environment after spreading of the basin stopped.

  • PDF