• Title/Summary/Keyword: micro-emulsion

Search Result 78, Processing Time 0.036 seconds

A New Detergentless Micro-Emulsion System Using Urushiol as an Enzyme Reaction System

  • Kim, John-Woo-Shik;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.369-375
    • /
    • 2001
  • Urushiol, a natural monomeric oil, was used to prepare a detergentless micro-emulsion with water and 2-propanol The formation of micro-emulsion was verified by conductivity measurements and dynamic light scattering. The conductivity data showed phase change dynamics, a characteristics of micro-emulsions, and subsequent dynamic light scattering study further confirmed the phenomenon. Average water droplet diameter was 10 nm to 500 nm when the molar ratio of 2-propanol ranged from 0.40 to 0.44 . Earlier studies were performed on toluene and hexane, in which the insoluble substrate in water phase was added to the solvents to be reacted on by enzymes. However, in the present urushiol system, urushiol was used as both solvent and substrate in the laccase polymerization of urushiol. The laccase activity in the system was examined using polymerization of urushiol. The laccase activity in the system was examined using syringaldezine as a substrate, and the activity increased rapidly near the molar ratio of 2-propanol at 0.4, where micro-emulsion started. The activity rose until 0.46 and fell dramatically thereafter. The study of laccase activity in differing mole fractions of 2-propanol showed the existence of an ‘optimal zone’, where the activity of laccase was significantly higher. In order to analyze urushiol polymerization by laccase, a bubble column reactor using a detergentless micro-emulsion system was constructed. Comparative study using other organic solvents systems were conducted and the 2-propanol system was shown to yield the highest polymerization level. The study of laccase activity at a differing mole fraction of 2-propanol showed the existence of an ‘optimal zone’ where the activity was significantly higher. Also, 3,000 cP viscosity was achieved in actual urushi processing, using only 1/100 level of laccase present in urushi.

  • PDF

Silicone oil에 기초한 microemulsion을 이용한 DNAPL의 제거

  • 권태순;백기태;이재영;양중석;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.479-482
    • /
    • 2003
  • In this study, the solubilization of dense nonaqueous phase liquid (DNAPL) using oil-based emulsion was investigated for aquifer remediation. The micro-sized oil emulsion has large surface areas and buoyancy force, therefore it can be effective in treating DNAPL pool of the aquifer without downward migration of DNAPLs. The emulsion was prepared using silicone oil and mechanical homogenization. And the prepared emulsion had micro-sized similar distribution: 99 % in number and 80 % in volume were less than 10${\mu}{\textrm}{m}$. As target pollutants, trichloroethylene and 1, 2 dichlorobenzene were selected. All of used DNAPLs were solubilized successfully in oil-based emulsion. Even at low oil percentage, emulsion showed good solubility against pollutants. Therefore, the remediation using oil-based emulsion was considered as an effective alternative in dealing with DNAPLs of the aquifer.

  • PDF

Silica Coating of Nanosized CoFe2O4 Particles by Micro-emulsion Method (마이크로에멀젼법을 이용한 나노 CoFe2O4 분말의 실리카 코팅)

  • Kim, Yoo-Jin;Yu, Ri;Park, Eun-Young;Pee, Jae-Hwan;Choi, Eui-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.69-73
    • /
    • 2009
  • We report the preparation of nanocrystalline cobalt ferrite, $CoFe_2O_4$ particles and their surface coating with silica layers using micro emulsion method. The cobalt ferrite nanoparticles with the size 7nm are firstly prepared by thermal decomposition method. Hydrophobic nanoparticles were coated with silica using micro-emulsion method with surfactant, $NH_4OH$, and tetraethylorthosilicate (TEOS). Monodispersed and spherical silica coated cobalt ferrite nanoparticles have average particle diameter of 38 nm and narrow sized distribution.

Roughness and micro pit defects on surface of SUS 430 stainless steel strip in cold rolling process

  • Li, Changsheng;Zhu, Tao;Fu, Bo;Li, Youyuan
    • Advances in materials Research
    • /
    • v.4 no.4
    • /
    • pp.215-226
    • /
    • 2015
  • Experiment on roughness and micro pit defects of SUS 430 ferrite stainless steel was investigated in laboratory. The relation between roughness and glossiness with reduction in height, roll surface roughness, emulsion parameters was analyzed. The surface morphology of micro pit defects was observed by SEM, and the effects of micro pit defects on rolling reduction, roll surface roughness, emulsion parameters, lubrication oil in deformation zone and work roll diameter were discussed. With the increasing of reduction ratio strip surface roughness Ra(s), Rp(s) and Rv(s) were decreasing along rolling and width direction, the drop value in rolling direction was faster than that in width direction. The roughness and glossiness were obtained under emulsion concentration 3% and 6%, temperature $55^{\circ}C$ and $63^{\circ}C$, roll surface roughness $Ra(r)=0.5{\mu}m$, $Ra(r)=0.7{\mu}m$ and $Ra(r)=1.0{\mu}m$. The glossiness was declined rapidly when the micro defects ratio was above 23%. With the pass number increasing, the micro pit defects were reduced, uneven peak was decreased and gently along rolling direction. The micro pit defects were increased with the roll surface roughness increase. The defects ratio was declined with larger gradient at pass number 1 to 3, but gentle slope at pass number 4 to 5. When work roll diameter was small, bite angle was increasing, lubrication oil in micro pit of deformation zone was decreased, micro defects were decreased, and glossiness value on the surface of strip was increased.

Effect of Ambient Temperature and Droplet Size of a Single Emulsion Droplet on Auto-ignition and Micro-explosion (단일 유화액적에서의 분위기 온도와 액적크기에 따른 자발화와 미소폭발의 영향)

  • Jeong, In-Cheol;Lee, Kyung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.49-55
    • /
    • 2007
  • The characteristics of auto-ignition and combustion process of a single droplet of emulsified fuel suspended in a high-temperature air chamber have been investigated experimentally with various droplet sizes, surrounding temperatures, and water contents. The used fuels was n-Decane and it was emulsified with varied water contents whose maximum is 30%. The high-speed camera has been adopted to measure the ignition delay and flame life time. It was also applied to observe micro-explosion behaviors. The increase of droplet size and chamber temperature cause the decrease of the ignition delay time and flame life-time. As the water contents increases, the ignition delay time increases and the micro-explosion behaviors are strengthened. The starting timings of micro-explosion and fuel puffing are compared for different droplet sizes and the amount of water contents.

Removal of Reactive Orange 16 by the Ag/TiO2 Composite Produced from Micro-emulsion Method (마이크로에멀젼 방법에 의해 제조된 Ag/TiO2의 Reactive Orange 16 제거에 관한 연구)

  • Lee, SiJin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.11
    • /
    • pp.5-10
    • /
    • 2019
  • For the development of long-wavelength responding photocatalyst, Ag was applied to commercial $TiO_2$ to produce $Ag/TiO_2$ photocatalyst. Moreover, micro-emulsion method was used in order to increase the efficiency of the photocatalyst by enhancing the dispersion of Ag. Physical properties of the manufactured catalyst were analyzed by scanning electron microscopy (SEM), field emission transmission electron microscopy (FE-TEM) and diffuse reflectance spectroscopy (DRS). For the catalytic performance measurement, RO 16 (Reactive Orange 16) removal was performed with 25 ppm RO 16 under UV-A (365 nm) irradiation. In addition, ball milling and dip-coating method were used to synthesize the photocatalyst for the comparison of the outcomes of using different synthesis methods. In addition, catalytic performance was improved by varying the Ag content and surfactant content. The highest catalytic performance was shown at $Ag/TiO_2$ synthesized by micro-emulsion method with 2 wt% of Ag content, and 0.5 g of the surfactant.

Fabrication of Colloidal Clusters of Polymer Microspheres and Nonspherical Hollow Micro-particles from Pickering Emulsions

  • Cho, Young-Sang;Kim, Tae-Yeol;Yi, Gi-Ra;Kim, Young-Kuk;Choi, Chul-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.159-166
    • /
    • 2012
  • We have introduced the Pickering emulsion systems to generate novel confining geometries for the selforganization of monodisperse polymer microspheres using nanoparticle-stabilized emulsion droplets encapsulating the building block particles. Then, through the slow evaporation of emulsion phases by heating, these microspheres were packed into regular polyhedral colloidal clusters covered with nanoparticle-stabilizers made of silica. Furthermore, polymer composite colloidal clusters were burnt out leaving nonspherical hollow micro-particles, in which the configurations of the cluster structure were preserved during calcination. The selfassembled porous architectures in this study will be potentially useful in various applications such as novel building block particles or supporting materials for catalysis or gas adsorption.

The Application of Gassed Bulk Emulsion to Quarry Blasting in Limestone Mine (석회석 광산 채석발파에서 Gassed Bulk Emulsion의 적용)

  • Min, Hyung-Dong;Jeong, Min-Su;Park, Yun-Seok;Lee, Eung-So;Lee, Won-Wook
    • Explosives and Blasting
    • /
    • v.25 no.2
    • /
    • pp.61-70
    • /
    • 2007
  • Korean large limestone mines started to employ bulk emulsion explosives to improve the productivity in early 2000s. As the application of the bulk emulsion explosives became common in the mid 2000s, the bulk emulsion application increases overall performance but it tends to decrease the moving and heaving because it lacks in gas volume and heat energy. Therefore, the chemical gassing technique was introduced to improve the blasting efficiency of the existing bulk emulsion explosives. The chemical gassing is a technique to replacing GMB(Glass Micro Balloon), which is used for a sensitizer, with gassing agent to chemically sensitize it. This paper introduces the case of successful application of chemical gassing in a Korean large limestone mine. We also compared and evaluated the blast and work efficiency between bulk emulsion GMB & gassing agent (chemical gassing). The results indicate that the replacement of GMB with gassing agent improved fragmentation in the upper part and toe of a bench as well as moving efficiency of the material.

Fabrication and Characterization of Silica Coated Fe3O4 Nanoparticles in Reverse Micro Emulsion (마이크로에멀젼법을 이용하여 실리카 코팅된 나노 Fe3O4 분말의 합성과 분석연구)

  • Yu, Ri;Kim, Yoo-Jin;Pee, Jae-Hwan;Hwang, Kwang-Taek;Yang, Hee-Seung;Kim, Kyung-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.113-116
    • /
    • 2010
  • The silica coated $Fe_3O_4$ nanoparticles have been synthesized using a micro-emulsion method. The $Fe_3O_4$ nanoparticles with the sizes 6 nm in diameter were synthesized by thermal decomposition method. Hydrophobic $Fe_3O_4$ nanoparticles were coated silica using surfactant and tetraethyl orthosilicated (TEOS) as a $SiO_2$ precursor. Shell thickness of silica coated $Fe_3O_4$ can be controlled (11~20 nm) through our synthetic conditions. The $Fe_3O_4$ and silica coated $Fe_3O_4$ nano powders were characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD) and vortex magnetic separation (VMS).

Preparation of Ultra Fine Poly(methyl methacrylate) Microspheres in Methanol-enriched Aqueous Medium

  • Shim, Sang-Eun;Kim, Kijung;Sejin Oh;Soonja Choe
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.240-245
    • /
    • 2004
  • Monodisperse PMMA micro spheres are prepared by means of a simple soap-free emulsion polymerization in methanol-enriched aqueous medium in a single step process. The size and uniformity of the microspheres are dependent on the polymerization temperature. In a stable system, the uniformity is improved with the polymerization time. The most uniform and stable micro spheres are obtained under mild agitation speed of 100 rpm at 70$^{\circ}C$. The monodisperse PMMA microspheres in the size range of 1.4-2.0 $\mu\textrm{m}$ having less than 5% size variation are successfully achieved with varying concentrations of monomer and initiator. As the monomer and initiator concentrations increase, the larger micro spheres with enhanced uniformity are obtained. However, the decreased amount of water induces the polydisperse PMMA particles due to the generation of secondary particles.