• Title/Summary/Keyword: micro-defect

Search Result 220, Processing Time 0.023 seconds

Cervical Spine Malformations Associated With a 5q34-5q35.2 Micro-interstitial Deletion: A Case Report

  • Lee, Heewon;Kim, Joon Sung;Lim, Seong Hoon;Sul, Bomi;Hong, Bo Young
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.884-887
    • /
    • 2018
  • We report a female proband carrying a de novo 5q34-q35.2 deletion breakpoint, and review the unique skeletal phenotype and possible genotype related to this mutation. The patient presented with a persistent head tilt and limited head rotation. Non-contrast-enhanced three-dimensional computed tomography of the cervical spine revealed several malformations including a bone cleft in the right pars interarticularis, a bone defect in both C5 lamina and the transverse foramen at C2-C3, agenesis of the right articular process of C5, bony fusion of C4-C5, and subluxation of the craniocervical joints. Several deformities of the cervical spine seen in this patient have not been associated with the 5q deletion. A review of 5q-related mutations suggests that abnormalities associated with MSX2 gene might cause cervical spine abnormalities.

Scanning acoustic microscopy for material evaluation

  • Hyunung Yu
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.25.1-25.11
    • /
    • 2020
  • Scanning acoustic microscopy (SAM) or Acoustic Micro Imaging (AMI) is a powerful, non-destructive technique that can detect hidden defects in elastic and biological samples as well as non-transparent hard materials. By monitoring the internal features of a sample in three-dimensional integration, this technique can efficiently find physical defects such as cracks, voids, and delamination with high sensitivity. In recent years, advanced techniques such as ultrasound impedance microscopy, ultrasound speed microscopy, and scanning acoustic gigahertz microscopy have been developed for applications in industries and in the medical field to provide additional information on the internal stress, viscoelastic, and anisotropic, or nonlinear properties. X-ray, magnetic resonance, and infrared techniques are the other competitive and widely used methods. However, they have their own advantages and limitations owing to their inherent properties such as different light sources and sensors. This paper provides an overview of the principle of SAM and presents a few results to demonstrate the applications of modern acoustic imaging technology. A variety of inspection modes, such as vertical, horizontal, and diagonal cross-sections have been presented by employing the focus pathway and image reconstruction algorithm. Images have been reconstructed from the reflected echoes resulting from the change in the acoustic impedance at the interface of the material layers or defects. The results described in this paper indicate that the novel acoustic technology can expand the scope of SAM as a versatile diagnostic tool requiring less time and having a high efficiency.

Bone regeneration effects of human allogenous bone substitutes: a preliminary study

  • Lee, Deok-Won;Koo, Ki-Tae;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.3
    • /
    • pp.132-138
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the bone regeneration effects of cortical, cancellous, and cortico-cancellous human bone substitutes on calvarial defects of rabbits. Methods: Four 8-mm diameter calvarial defects were created in each of nine New Zealand white rabbits. Freeze-dried cortical bone, freeze-dried cortico-cancellous bone, and demineralized bone matrix with freeze-dried cancellous bone were inserted into the defects, while the non-grafted defect was regarded as the control. After 4, 8, and 12 weeks of healing, the experimental animals were euthanized for specimen preparation. Micro-computed tomography (micro-CT) was performed to calculate the percent bone volume. After histological evaluation, histomorphometric analysis was performed to quantify new bone formation. Results: In micro-CT evaluation, freeze-dried cortico-cancellous human bone showed the highest percent bone volume value among the experimental groups at week 4. At week 8 and week 12, freeze-dried cortical human bone showed the highest percent bone volume value among the experimental groups. In histologic evaluation, at week 4, freeze-dried cortico-cancellous human bone showed more prominent osteoid tissue than any other group. New bone formation was increased in all of the experimental groups at week 8 and 12. Histomorphometric data showed that freeze-dried cortico-cancellous human bone showed a significantly higher new bone formation percentile value than any other experimental group at week 4. At week 8, freeze-dried cortical human bone showed the highest value, of which a significant difference existed between freeze-dried cortical human bone and demineralized bone matrix with freeze-dried cancellous human bone. At week 12, there were no significant differences among the experimental groups. Conclusions: Freeze-dried cortico-cancellous human bone showed swift new bone formation at the 4-week healing phase, whereas there was less difference in new bone formation among the experimental groups in the following healing phases.

The Study on Micro Soldering Using Low-Residue Flux in $N_2$Atmosphere (질소 분위기에서 저잔사 플럭스를 사용한 마이크로 솔더링에 관한 연구)

  • 최명기;정재필;이창배;서창제;황선효
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.7-15
    • /
    • 2000
  • The purpose of this work is to evaluate the solderahility and characteristics of solder joints. Bridge defect of solder joint was examined in natural atmosphere and $N_2$ condition. Consequently, wettability was excellent for each of Sn-Pb plated Cu specimen, Sn plated Cu specimen, and Cu polished in $N_2$ condition. The wetting time in $N_2$ condition was shorter than that of natural atmosphere condition, showing the decreasing values of about 0.2~0.45 seconds. The max. wetting force under the $N_2$ condition was more increasing that of natural atmosphere condition, showing the increasing values of about 1.8~2.8 N. With the result of wetting balance test, the wetting time ($t_2$) and wetting farce according to increasing amount of $N_2$ from 10 1/min to 30 1/min, the wetting time ($t_2$) was reduced about 0.25 second and wetting force was increased about 2.3 N. In non-cleaning flux, when $N_2$ gas is applied, it is compensated to decrease of wettability. In the case of using the $N_2$ gas, the wettability was improved. The reason for improving wettability is due to preventing the formation of dross. The generation rate of bridge in $N_2$ condition decreased than that of natural atmosphere, and when the specimen had a fine pitch, the rate of bridge defects was considerably decreased in $N_2$ condition, showing the decreasing rate of 25~75%.

  • PDF

Silk Fibroin and Substance P Combination Graft for the Reconstruction of a Bone Defect (실크 피브로인 지지체와 Substance P를 이용한 골 이식재)

  • Park, Ki-Yu;Choi, Kyo-Hee;Park, Young-Ju;Song, Ji-Young;Kim, Seong-Gon;Jo, You-Young;Kweon, Hae-Yong;Kang, Seok-Woo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.4
    • /
    • pp.293-300
    • /
    • 2011
  • Purpose: Substance P is a well known neurotransmitter and has been known to mediate pain. Recently, it has been unveiled that substance P is involved in the recruitment of mesenchymal stem cells to wound sites. The purpose of this study was to exam bone formation when a combination of substance P and silk fibroin was used in a bone defect model. Methods: Twenty rabbits were used and 40 calvarial defects were formed. They were divided as 4 groups (unfilled control, silk only, silk+$10{\mu}g$/ml substance P; Sub10, and silk+$100{\mu}g$/ml substance P; Sub100). All animals were humanely sacrificed 4 or 8 weeks after grafting. The specimens were analyzed by micro-computerized tomography and histological analysis. Results: When compared to the unfilled control to silk only group, there was significant difference in bone mineral density (BMD) and the attenuation coefficient (AC) at 4 weeks ($p$=0.037 and 0.038, respectively). When compared Sub10 group to Sub100 group, there was significant difference in BMD and AC at 8 weeks ($p$=0.004 for all). Residual graft amounts were $52.1{\pm}15.8$%, $15.2{\pm}9.2$% and $9.0{\pm}3.3$% for silk only, Sub10, and Sub100 groups, respectively. When comparing the residual graft amount of silk only to sub10 or sub100, the differences were statistically significant ($p$ <0.001). Conclusion: The silk fibroin scaffold showed higher BMD and AC than the unfilled control. The combination graft with substance P and silk fibroin scaffold showed a faster graft degradation than with a silk fibroin scaffold only.

Reliability of Non-invasive Sonic Tomography for the Detection of Internal Defects in Old, Large Trees of Pinus densiflora Siebold & Zucc. and Ginkgo biloba L. (노거수 내부결함 탐지를 위한 비파괴 음파단층촬영의 신뢰성 분석(소나무·은행나무를 중심으로))

  • Son, Ji-Won;Lee, Gwang-Gyu;An, Yoo-Jin;Shin, Jin-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.5
    • /
    • pp.535-549
    • /
    • 2022
  • Damage to forests, such as broken or falling trees, has increased due to the increased intensity and frequency of abnormal climate events, such as strong winds and heavy rains. However, it is difficult to respond to them in advance based on prediction since structural defects such as cavities and bumps inside trees are difficult to identify with a visual inspection. Non-invasive sonic tomography (SoT) is a method of estimating internal defects while minimizing physical damage to trees. Although SoT is effective in diagnosing internal defects, its accuracy varies depending on the species. Therefore, it is necessary to analyze the reliability of its measurement results before applying it in the field. In this study, we measured internal defects in wood by cross-applying destructive resistance micro drilling on old Pinus densifloraSiebold & Zucc. and Ginkgo bilobaL., which are representative tree species in Korea, to verify the reliability of SoT and compared the evaluation results. The t-test for the mean values of the defect measurement between the two groups showed no statistically significant difference in pine trees and some difference in ginkgo trees. Linear regression analysis results showed a positive correlation with an increase in defects in SoT images when the defects in the drill resistance graph increased in both species.

RIE/WET Texturing 구조의 다결정 태양전지의 특성평가

  • Seo, Il-Won;Son, Chan-Hui;Yun, Myeong-Su;Jo, Tae-Hun;Kim, Dong-Hae;Jo, Lee-Hyeon;No, Jun-Hyeong;Lee, Jae-Won;An, Jeong-Ho;Lee, Sang-Du;Cha, Seong-Deok;Gwon, Gi-Cheong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.439-439
    • /
    • 2012
  • 태양광 발전은 발전 셀의 특성상 태양광의 일사량, 태양과 셀 단면이 이루는 각도에 따라서 발전량의 차이를 가져온다. 실리콘 태양전지의 전면 texturing은 입사광의 반사율을 크게 감소시키고, 태양전지 내에서 빛의 통과길이를 증가시켜 태양전지 내의 흡수하는 빛의 양을 증가 시키는 역할을 한다. 따라서 전면 texturing은 단락전류를 증대시키는 효과를 가지고 온다. 일반적으로 texturing은 alkaline etching (WET) 공정과 reactive ion etching (RIE) 공정이 사용된다. 그리고 다결정 실리콘 태양전지의 경우에는 재료의 결정방향에 따라 식각이 되어지는 WET 공정의 경우 texturing 모양을 제어할 수 없어 효과적이지 못하는 결과를 가지고 온다. 본 연구에서는 Electroluminescence을 측정하여 RIE, WET 공정을 사용하여 만든 texturing 구조의 다결정 태양전지의 Microcrack 및 Defect, Electrode Failure, Hot spot등을 검출하였으며, ${\mu}$-PCD 측정 결과와 비교 분석하여 Micro carrier life time을 유추하여 계산하였다. 또한 반사율을 측정해본 결과 WET 공정 대비 RIE의 경우 단파장영역에서 반사율이 크게 감소하여, 상대적으로 높은 External quantum efficiency (EQE)가 측정되었다. 이는 Jsc를 증가시켜, 태양전지의 효율이 증가되는 결과를 얻을 수 있었다.

  • PDF

Comparison of unprocessed silk cocoon and silk cocoon middle layer membranes for guided bone regeneration

  • Kim, Seong-Gon;Kim, Min-Keun;Kweon, HaeYong;Jo, You-Young;Lee, Kwang-Gill;Lee, Jeong Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.11.1-11.8
    • /
    • 2016
  • Background: Silk cocoon is composed of multiple layers. The natural silk cocoon containing all layers was cut as a rectangular shape as defined as total group. The inner and outermost layers were removed from the total group and the remained mat was defined as the middle group. The objectives of this study was to compare the total group with the middle group as a barrier membrane for the guided bone regeneration. Methods: The effects of these materials on the cellular proliferation and alkaline phosphatase (ALP) expression of MG63 cells were explored. For comparing bone regeneration ability, bilateral bone defects were created in calvarial areas in ten adult New Zealand white rabbits. The defects were covered with silk membranes of the middle group, with silk membrane of the total group used as the control on the contralateral side. The defects were allowed to heal for 4 and 8 weeks. Micro-computerized tomography (${\mu}CT$) and histological examination were performed. Results: The middle group exhibited a higher MTT value 48 and 72 h after treatment compared to the total group. ALP expression was also higher in the middle group. The results of ${\mu}CT$ and histologic examination showed that new bone formation was significantly higher in the middle group compared to the total group 8 weeks postoperatively (P < 0.05). Conclusions: In conclusion, the middle layer of the silk cocoon supports guided bone regeneration better than unprocessed silk cocoon.

A Study on Comparison and Application of Numerical Models to Experiments in Discontinuous Rock Mass (불연속성 암반에서의 수치모델 검토 및 시험과의 비교.적용에 대한 연구)

  • 정교철
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.91-99
    • /
    • 1997
  • In general, there are various approaches available in literature to model discontinuous rock masses and engineers are often confused which one to use for designing structures in rock masses. Modelling rock masses can be classified mainly into two approaches. One is discrete modelling of intact rock and discontinuities and the other is the equivalent continuum modelling. In this study five models are selected ;(1) Crack tensor model, (2) Equivalent volume defect model, (3) Damage model, (4) Micro - structure model (Parallel model and Series model), and (5) Homogenization model. Most of these models are mainly concerned with how to define additional strain due to discontinuities over the representative elementary volume (REV) and how to relate the stress field of discontinuities to that acting on the REV. The characteristics of these models are clarified by comparing with results of some laboratory tests.

  • PDF

Mechanical Properties and Microstructure on Dissimilar Friction-Stir-Weld of Aluminium Alloys (FSW된 이종알루미늄합금의 접합 특성 및 미세 조직)

  • Han, Min-Su;Jang, Seok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.75-81
    • /
    • 2011
  • Dissimilar joining of aluminum 6061-T6 alloy to aluminum 5083-O alloy was performed using friction-stir welding technique. The mechanical properties, hardness, macro- and micro-structure on dissimilar friction-stir-weld aluminium alloy were investigated. Mechanical properties of the weld mainly depend on which Al alloy is placed at the retreating sides of the rotating tool respectively during dissimilar friction-stir weld because the microstructure of stir zone was mainly composed of welded Al alloys of the retreating side. Onion ring pattern was observed like lamella structure stacked by each Al alloy in turn. It apparently results in defect-free weld zone that traverse speed was changed to 124 mm/min under conditions of tool rotation speed like 1250 rpm with 5 mm of tool's prove diameter, 4.5 mm of prove length, 20 mm of shoulder diameter, and $2^{\circ}$ of tilting angle. The 231 MPa of ultimate stress and the 121 MPa of yield point are obtained about the friction-stir-welded Al 6061-T6(AS) to Al 5083-O(RS).