• 제목/요약/키워드: micro-concrete

검색결과 511건 처리시간 0.03초

Novel nonlinear stiffness parameters and constitutive curves for concrete

  • Al-Rousan, Rajai Z.;Alhassan, Mohammed A.;Hejazi, Moheldeen A.
    • Computers and Concrete
    • /
    • 제22권6호
    • /
    • pp.539-550
    • /
    • 2018
  • Concrete is highly non-linear material which is originating from the transition zone in the form of micro-cracks, governs material response under various loadings. In this paper, the constitutive models published by many researchers have been used to generate novel stiffness parameters and constitutive curves for concrete. Following such linear material formulations, where the energy is conservative during the curvature, and a nonlinear contribution to the concrete has been made and investigated. In which, nonlinear concrete elastic modulus modeling has been developed that is capable-of representing concrete elasticity for grades ranging from 10 to 140 MPa. Thus, covering the grades range of concrete up to the ultra-high strength concrete, and replacing many concrete models that are valid for narrow ranges of concrete strength grades. This has been followed by the introduction of the nonlinear Hooke's law for the concrete material through the replacement of the Young constant modulus with the nonlinear modulus. In addition, the concept of concrete elasticity index (${\varphi}$) has been proposed and this factor has been introduced to account for the degradation of concrete stiffness in compression under increased loading as well as the multi-stages micro-cracking behavior of concrete under uniaxial compression. Finally, a sub-routine artificial neural network model has been developed to capture the concrete behavior that has been introduced to facilitate the prediction of concrete properties under increased loading.

A Numerical Model for the Freeze-Thaw Damages in Concrete Structures

  • Cho Tae-Jun
    • 콘크리트학회논문집
    • /
    • 제17권5호
    • /
    • pp.857-868
    • /
    • 2005
  • This paper deals with the accumulated damage in concrete structures due to the cyclic freeze-thaw as an environmental load. The cyclic ice body nucleation and growth processes in porous systems are affected by the thermo-physical and mass transport properties, and gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and diffusion of chloride ion effects are hard to be identified in tests, and there has been no analytic model for the combined degradations. The main objective is to determine the driving force and evaluate the reduced strength and stiffness by freeze-thaw. For the development of computational model of those coupled deterioration, micro-pore structure characterization, pore pressure based on the thermodynamic equilibrium, time and temperature dependent super-cooling with or without deicing salts, nonlinear-fracture constitutive relation for the evaluation of internal damage, and the effect of entrained air pores (EA) has been modeled numerically. As a result, the amount of ice volume with temperature dependent surface tensions, freezing pressure and resulting deformations, and cycle and temperature dependent pore volume has been calculated and compared with available test results. The developed computational program can be combined with DuCOM, which can calculate the early aged strength, heat of hydration, micro-pore volume, shrinkage, transportation of free water in concrete. Therefore, the developed model can be applied to evaluate those various practical degradation cases as well.

Effect of macro and micro fiber volume on the flexural performance of hybrid fiber reinforced SCC

  • Turk, Kazim;Kina, Ceren;Oztekin, Erol
    • Advances in concrete construction
    • /
    • 제10권3호
    • /
    • pp.257-269
    • /
    • 2020
  • The aim of this study is to investigate the flexural performance of hybrid fiber reinforced self-compacting concrete (HFRSCC) having different ratio of micro and macro steel fiber. A total of five mixtures are prepared. In all mixtures, the sum of the steel fiber content is 1% and also water/binder ratio is kept constant. The amount of high range water reducer admixture (HRWRA) is arranged to satisfy the workability criteria of self-compacting concrete. Four-point bending test is carried out to analyze the flexural performance of the mixtures at 28 and 56 curing days. From the obtained load-deflection curves, the load carrying capacity, deflection and toughness values are investigated according to ASTM C1609, ASTM C1018 and JSCE standards. The mixtures containing higher ratio of macro steel fiber exhibit numerous micro-cracks and, thus, deflection-hardening response is observed. The mixture containing 1% micro steel fiber shows worst performance in the view of all flexural parameters. An improvement is observed in the aspect of toughness and load carrying capacity as the macro steel fiber content increases. The test results based on the standards are also compared taking account of abovementioned standards.

RC deep beams with unconventional geometries: Experimental and numerical analyses

  • Vieira, Agno Alves;Melo, Guilherme Sales S.A.;Miranda, Antonio C.O.
    • Computers and Concrete
    • /
    • 제26권4호
    • /
    • pp.351-365
    • /
    • 2020
  • This work presents numerical and experimental analyses of the behavior of reinforced-concrete deep beams with unconventional geometries. The main goal here is to experimentally and numerically study these geometries to find possible new behaviors due to the material nonlinearity of reinforced concrete with complex geometries. Usually, unconventional geometries result from innovative designs; in general, studies of reinforced concrete structures are performed only on conventional members such as beams, columns, and labs. To achieve the goal, four reinforced-concrete deep beams with geometries not addressed in the literature were tested. The models were numerically analyzed with the Adaptive Micro Truss Model (AMTM), which is the proposed method, to address new geometries. This work also studied the main parameters of the constitutive model of concrete based on a statistical analysis of the finite element (FE) results. To estimate the ultimate loads, FE simulations were performed using the Monte Carlo method. Based on the obtained ultimate loads, a probabilistic distribution was created, and the final ultimate loads were computed.

고황산염 시멘트를 이용한 고강도 콘크리트의 수화거동과 미세구조에 관한 기초적 연구 (A Fundamental Study on the Hydration and micro Structure of high Strength Concrete Used by high Calcium Sulfate Cement)

  • 박승범;임창덕
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.99-105
    • /
    • 1993
  • The purpose of this fundamental study is to investigate the mechanism of high strength concrete using the high calcium sulfate cement from a point of view in cement hydration and micro structure. As a results, it was found that the internal pores of concrete are decreased by using the high calcium sulfate cement, because the hydrates of Ettringite which is densified in structure is much formed in early ages at steam curing. In addition to the ettringite needs the 32 times of free water formed mixing water for hydration. This effect are not only decreased the water to cement ratio and also increase to comp, strength of concrete. It was conclude that these above the two facts are the main mechanism of high strength concrete using high calcium sulfate cement.

  • PDF

고성능 콘크리트 교면포장의 최적 두께 평가 (Evaluation of Optimum Thickness of High Performance Concrete Bridge Deck Pavement)

  • 박해균;김지원;전상은;이명섭;원종필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.318-321
    • /
    • 2006
  • The objective of this study is to evaluate the optimum thickness of High Performance Concrete bridge deck pavement. The application of High Performance Concrete bridge deck pavement with micro-silica was introduced to north America in the early 1980's. In order to decide the optimum thickness of High Performance Concrete bridge deck pavement, we conducted Finite Element Method analysis with Incheon Grand Bridge constructed by SAMSUNG E&C. From the FEM results, a thickness of five centimeters of High Performance Concrete bridge deck pavement with micro-silica is considered as a resonable value compared with the conventional asphalt bridge deck pavement.

  • PDF

SHIELD DESIGN OF CONCRETE WALL BETWEEN DECAY TANK ROOM AND PRIMARY PUMP ROOM IN TRIGA FACILITY

  • Khan, M J H;Rahman, M;Ahmed, F U;Bhuiyan, S I;Haque, A;Zulquarnain, A
    • Journal of Radiation Protection and Research
    • /
    • 제32권4호
    • /
    • pp.190-193
    • /
    • 2007
  • The objective of this study is to recommend the radiation protection design parameters from the shielding point of view for concrete wall between the decay tank room and the primary pump room in TRIGA Mark-II Research Reactor Facility. The shield design for this concrete wall has been performed with the help of Point-kernel Shielding Code Micro-Shield 5.05 and this design was also validated based on the measured dose rate values with Radiation Survey Meter (G-M Counter) considering the ICRP-60 (1990) recommendations for occupational dose rate limit ($10{\mu}Sv/hr$). The recommended shield design parameters are: (i) thickness of 114.3 cm Ilmenite-Magnetite Concrete (IMC) or 129.54 cm Ordinary Reinforced Concrete (ORC) for concrete wall A (ii) thickness of 66.04 cm Ilmenite-Magnetite Concrete (IMC) or 78.74 cm Ordinary Reinforced Concrete (ORC) for concrete wall B and (iii) door thickness of 3.175 cm Mild Steel (MS) on the entrance of decay tank room. In shielding efficiency analysis, the use of I-M concrete in the design of this concrete wall shows that it reduced the dose rate by a factor of at least 3.52 times approximately compared to ordinary reinforced concrete.

보통포틀랜드 시멘트와 초미립자 시멘트의 혼화재료 혼입시 특성 (The Specification of OPC and Micro Cement using the Admixture)

  • 김득모;이화영;박원춘;문경주;소승영;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.905-908
    • /
    • 2008
  • 보통 포틀랜드 시멘트(Ordinary Portland Cement 이하 OPC)에 혼화재료를 사용하는 기존의 콘크리트는 초기 고강도를 발현하는데에 많은 어려움을 지니고 있다. 이에 본 연구에서는 그 방안으로 초미립자 시멘트(Micro Cement 이하 MC)의 사용에 대해 연구하고자 실험을 진행하였다. 실험 결과 MC는 OPC보다 플로우에서 취약함을 보였으나 초기강도에서 우수한 강도특성을 보였고 28일 강도에서도 OPC를 상회하는 것을 알 수 있었다. GBFS(granulated Blast Furnace Slag이하 GBFS라 함)의 경우 플로우는 감소하며, 초기강도는 증가하는 것으로 나타났다. MC의 경우 플라이애시 혼입시 강도발현에 있어 도움이 되지 않는 것으로 나타났다.

  • PDF

Modeling of Environmental Response for Concrete Durability

  • 윤인석
    • 한국건설순환자원학회논문집
    • /
    • 제7권3호
    • /
    • pp.56-61
    • /
    • 2012
  • 콘크리트의 열화는 현재 전세계적인 관심 분야로서 가장 보편적인 열화원인은 염해이다. 이를 고려한 내구수명 예측기법의 개발은 토목건설 기술에 매우 중요한 부분을 차지하고 있으나, 대부분의 기존의 연구는 수명예측에 대한 기법에 집중되어 왔을 뿐, 콘크리트 표면의 미세 기후조건을 고려한 환경 분석은 매우 드문 실정이다. 그러나 콘크리트의 내구성은 표면의 특성에 의해 지배되므로, 실질적으로 표면상태에 대응한 미세 기후조건을 연구하여 환경대응 인자로 정립할 필요가 있다. 본 연구는 현장 기후조건을 계측하여 콘크리트의 미세기후조건을 해석할 수 있는 방법을 제안하였다. 이 결과는 염소이온 확산계수와 같은 재료 매개변수에 반영하여 더욱 정밀한 수치 해를 얻는데 이용되었다. 본 연구는 콘크리트의 내구성 설계기법을 개발하기 위하여, 환경인자에 대응한 매개변수를 도출하는데 이용될 수 있을 것으로 기대된다.

  • PDF

유용미생물을 이용한 콘크리트의 수질정화특성에 관한 실험적 연구 (An Experimental Study on Water-Purification Properties of Concrete Using Effective Micro-Organisms)

  • 서대석;전진용;김정환;권혁준;박승범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.757-760
    • /
    • 2008
  • 오늘날 산업의 발달과 함께 생활수준이 향상됨에 따라 삶의 질을 향상시키기 위한 안락하고 편안한 주거환경의 확보와 함께 주거환경주변에서 발생하는 각종오염문제의 해결에 관해서도 그 관심이 집중되고 있다. 그러나 최근 새집증후군 등 콘크리트제품에 대한 환경적인 안정성에 대한 논란이 심화되면서 콘크리트 경화시 발생하는 각종 물질들의 처리에 대하여 본 연구에서는 오염된물의 처리, 하수슬러지 및 오염된 토양의 중금속 및 악취제거에 사용되는 유용미생물을 콘크리트에 적용을 통하여 하천, 호수 등 각종 수변부에 적용되는 구조물에의 적용 가능성을 알아보기 위하여 유용미생물의 사용 유무에 따른 콘크리트의 수질정화성능(SS, BOD, COD, T-P, T-N)을 측정하였다. 유용미생물을 이용한 콘크리트의 수질정화 시험결과 각각의 제거율은 유용미생물이 함유된 콘크리트 블록의 경우가 일반콘크리트 블록에 비해 오염물질 제거율이 전체적으로 약 10% 정도 높게 나타나 유용미생물의 작용에 의하여 수질정화에 효과가 있는 것으로 사료된다.

  • PDF