• Title/Summary/Keyword: micro-CT

Search Result 421, Processing Time 0.029 seconds

Evaluation of internal adaptation of dental adhesive restorations using micro-CT

  • Kwon, Oh-Hyun;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.1
    • /
    • pp.41-49
    • /
    • 2012
  • Objectives: The internal adaptation of composite restorations with or without resin modified glass ionomer cement (RMGIC) was analyzed non-destructively using Microcomputed tomography (micro-CT). Materials and Methods: Thirty intact human teeth were used. The specimens were divided into 3 groups. In the control group, the cavities were etched with 10% phosphoric acid for 15 sec. Composite resin was filled into the cavity without adhesive. In group 1, light cured glass ionomer cement (GIC, Fuji II LC, GC) was applied as a base. The cavities were then etched, bonded, light cured and filled with composites. In group 2, the cavities were then etched, bonded, light cured and filled with composites without base application. They were immersed in a 25% silver nitrate solution. Micro-CT was performed before and after mechanical loading. One-way ANOVA with Duncan analysis was used to compare the internal adaptation between the groups before or after loading. A paired t-test was used to compare internal adaptation before and after mechanical loading. All statistical inferences were made within the 95% confidence interval. Results: The silver nitrate solution successfully penetrated into the dentinal tubules from the pulp spaces, and infiltrated into the gap between restoration and pulpal floor. Group 2 showed a lower adaptation than the control group and group 1 (p < 0.05). There was no significant difference between the control group and group 1. For all groups, there was a significant difference between before and after mechanical loading (p < 0.05). Conclusions: The internal adaptation before and after loading was better when composites were bonded to tooth using adhesive than composites based with RMGIC.

Study of Root Characteristics of Angelica gigas Nakai in Plantations using a Micro-CT Camera (Micro-CT 촬영기법에 의한 재배지 참당귀의 뿌리 특성)

  • Jeong, Dae Hui;Kim, Ki Yoon;Sim, Su Jin;Jung, Chung Ryul;Kim, Hyun Jun;Jeon, Kwon Seok;Park, Hong Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.5
    • /
    • pp.307-314
    • /
    • 2019
  • Background: We measured the weight characteristics, intercellular space volume as a proportion of root volume, and quantities of the functional component in Angelica gigas Nakai, collected from four cultivation areas in Pyeongchang, including Tapdong-ri and SangjinBu-ri, and tested the results for correlations. Methods and Results: Dry weight was the highest in the Tapdong-ri group ($13.37{\pm}0.13g$) and the lowest in the SangjinBu-ri group ($11.90{\pm}0.57g$). The percentage of intercellular spaces within the roots, determined by micro-CT camera, was the highest in the Tapdong-ri group ($6.44{\pm}0.76%$) and the lowest in the SangjinBu-ri group ($9.01{\pm}2.15%$). The quantity of functional components were the highest in the Tapdong-ri group ($116.13{\pm}9.53mg/g$) and the lowest in the SangjinBu-ri group ($99.77{\pm}23.23mg/g$). Conclusions: The dry weight of A. gigas significantly correlated with the volume and percentage of intercellular space. An increase in the dry weight resulted in a negative correlation between the volume and ratio of the intercellular spaces. The volume of intercellular space correlated negatively with levels of the functional components, this was significant in the case of the nodakenin, decursin and decursinol angelate content (p < 0.016).

Utilization of Resin Infiltration for the Minimally Invasive Composite Restoration (최소침습적 복합레진 수복을 위한 레진침투법의 활용)

  • Kim, Hyungjun;Park, Soyoung;Jeong, Taesung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.4
    • /
    • pp.382-391
    • /
    • 2019
  • This study was aimed to assess the new trial for minimal cavity preparation in composite restoration combined with resin infiltration, focusing at application sequence. 32 human primary molars with early carious lesions around small cavity were selected and randomly divided into two groups, according to the sequence of cavity preparation (P), composite filling (F) and resin infiltration (I) as IPF and PFI group. Each group was assessed about amount of tooth reduction, features of resin infiltration, and marginal leakage around restoration. Amount of tooth reduction evaluated using micro-CT was decreased compared with the original lesion size in both groups. Features of resin infiltration were verified under confocal laser scanning microscopy. In both groups, infiltrant resin was found on all around the composite and maintained in spite of extent of decalcification even after artificial caries induction. Marginal micro leakage assessed with silver nitrate immersion and micro-CT was found more frequently in PFI group. The technique combining resin infiltration and composite restoration might ensure better adhesion prognosis as applied by the sequence of resin infiltration, cavity preparation, and composite filling. This new trial was thought meaningful in minimizing the cavity size and contributing to minimal invasive dentistry.

Finite Element Analysis of Sound Transfer Characteristics for Middle Ear (유한요소 모델을 이용한 중이의 소리전달 특성 해석)

  • Gal, Young-Min;Baek, Moo-Jin;Lee, Doo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1563-1571
    • /
    • 2011
  • In this study, we developed a finite element model of the human middle ear has been developed to calculate itsfor sound transfer characteristics calculation. We usedThe geometric data forof ossicles, obtained byfrom micro-CT scanning, was used in order to develop the middle- ear FE model. A right- side temporal bone of a Korean cadaver was used for the micro-CT scanning. The developed FE model includes three ossicles, the tympanic membrane, ligaments, and muscles. We calculated theA sound transfer function from the tympanic membrane to the stapes footplate was calculated. The sound transfer function calculated vias of the FE model shows good agreement with measured responses over the 10- kHz frequency band. To measureidentify the sensitivityies of the middle- ear function due to material property variation, we studied several parameters studies have been fulfilled using the middle ear FE model. TAs a result the stiffness property of the incudostapedial joint had the greatest influence onwas the most influential to the middle- ear sound transfer function among the parameters.

Quantitative Analysis of Skarn Ore Using 3D Images of X-ray Computed Tomography (3차원 X-ray 단층 화상을 이용한 스카른 광석의 정량분석 연구)

  • Jeong, Mi-Hee;Cho, Sang-Ho;Jeong, Soo-Bok;Kim, Young-Hun;Park, Jai-Koo;Kaneko, Katsuhiko
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.211-217
    • /
    • 2010
  • A micro-focus X-ray computed tomography (CT) was employed to determine quantitative phase analysis of skarn Zn-Pb-Cu ore by nondestructive visualization of the internal mineral distribution of a skarn ore. The micro CT images of the ore were calibrated to remove beam hardening artifacts, and compared with its scanning electron microscope (SEM) images to set the threshold of CT number range covering sulfide ore minerals. The volume ratio of sulfide and gangue minerals was calculated 20.5% and 79.5%, respectively. The quantitative 3D X-ray CT could be applied to analyse the distribution of economic minerals and their recovery.

Effects of trabecular bone microstructure on stress distribution within premolar tooth and implant (망상골의 구조와 밀도가 치과용 임플란트와 하악골에 미치는 영향)

  • Chon Chang Soo;Lee Sang Up;Lee Kyoung Joung;Kim Han Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.210-217
    • /
    • 2005
  • This study examined the effect of cancellous bone microstructure on stress distribution within a premolar tooth and a dental implant against mastication force by the micro-finite element method (FEM). The mandibular specimen including a premolar was obtained from a cadaver and scanned with micro-CT to obtain CT images. FE models were reconstructed from CT images at mid-sagittal plane of the tooth. Six models were generated and analyzed for different structure and density in cancellous bone. Stress distributions fur each implant (or tooth) and the surrounding bone were compared. The study indicated that the microstructure of cancellous bone should be considered in finite element analysis to produce reasonable results and thus implant systems with high success rate.

Micro-CT image-based reconstruction algorithm for multiscale modeling of Sheet Molding Compound (SMC) composites with experimental validation

  • Lim, Hyoung Jun;Choi, Hoil;Yoon, Sang-Jae;Lim, Sang Won;Choi, Chi-Hoon;Yun, Gun Jin
    • Composite Materials and Engineering
    • /
    • v.3 no.3
    • /
    • pp.221-239
    • /
    • 2021
  • This paper presents a multiscale modeling method for sheet molding compound (SMC) composites through a novel bundle packing reconstruction algorithm based on a micro-CT (Computed Tomography) image processing. Due to the complex flow pattern during the compression molding process, the SMC composites show a spatially varying orientation and overlapping of fiber bundles. Therefore, significant inhomogeneity and anisotropy are commonly observed and pose a tremendous challenge to predicting SMC composites' properties. For high-fidelity modeling of the SMC composites, the statistical distributions for the fiber orientation and local volume fraction are characterized from micro-CT images of real SMC composites. After that, a novel bundle packing reconstruction algorithm for a high-fidelity SMC model is proposed by considering the statistical distributions. A method for evaluating specimen level's strength and stiffness is also proposed from a set of high-fidelity SMC models. Finally, the proposed multiscale modeling methodology is experimentally validated through a tensile test.

Does mini-implant-supported rapid maxillary expansion cause less root resorption than traditional approaches? A micro-computed tomography study

  • Alcin, Rukiye;Malkoc, Siddik
    • The korean journal of orthodontics
    • /
    • v.51 no.4
    • /
    • pp.241-249
    • /
    • 2021
  • Objective: This study aimed to evaluate the volume, amount, and localization of root resorption in the maxillary first premolars using micro-computed tomography (micro-CT) after expansion with four different rapid maxillary expansion (RME) appliances. Methods: In total, 20 patients who required RME and extraction of the maxillary first premolars were recruited for this study. The patients were divided into four groups according to the appliance used: mini-implant-supported hybrid RME appliance, hyrax RME appliance, acrylic-bonded RME appliance, and full-coverage RME appliance. The same activation protocol (one activation daily) was implemented in all groups. For each group, the left and right maxillary first premolars were scanned using micro-CT, and each root were divided into six regions. Resorption craters in the six regions were analyzed using special CTAn software for direct volumetric measurements. Data were statistically analyzed using Kruskal-Wallis one-way analysis of variance and Mann-Whitney U test with Bonferroni adjustment. Results: The hybrid expansion appliance resulted in the lowest volume of root resorption and the smallest number of craters (p < 0.001). In terms of overall root resorption, no significant difference was found among the other groups (p > 0.05). Resorption was greater on the buccal surface than on the lingual surface in all groups except the hybrid appliance group (p < 0.05). Conclusions: The findings of this study suggest that all expansion appliances cause root resorption, with resorption craters generally concentrated on the buccal surface. However, the mini-implant-supported hybrid RME appliance causes lesser root resorption than do other conventional appliances.

Influence of reconstruction parameters of micro-computed tomography on the analysis of bone mineral density

  • Gaeta-Araujo, Hugo;Nascimento, Eduarda Helena Leandro;Brasil, Danieli Moura;Madlum, Daniela Verardi;Haiter-Neto, Francisco;Oliveira-Santos, Christiano
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.153-159
    • /
    • 2020
  • Purpose: This study was conducted evaluate the influence of reconstruction parameters of micro-computed tomography (micro-CT) images on bone mineral density (BMD) analyses. Materials and Methods: The sample consisted of micro-CT images of the maxillae of 5 Wistar rats, acquired using a SkyScan 1174 unit (Bruker, Kontich, Belgium). Each acquisition was reconstructed following the manufacturer's recommendations(standard protocol; SP) for the application of artifact correction tools(beam hardening correction [BHC], 45%; smoothing filter, degree 2; and ring artifact correction [RAC], level 5). Additionally, images were reconstructed with 36 protocols combining different settings of artifact correction tools (P0 to P35). BMD analysis was performed for each reconstructed image. The BMD values obtained for each protocol were compared to those obtained using the SP through repeated-measures analysis of variance with the Dunnett post hoc test(α=0.05). Results: The BMD values obtained from all protocols that used a BHC of 45% did not significantly differ from those obtained using the SP (P>0.05). The other protocols all yielded significantly different BMD values from the SP(P<0.05). The smoothing and RAC tools did not affect BMD values. Conclusion: BMD values measured on micro-CT images were influenced by the BHC level. Higher levels of BHC induced higher values of BMD.

Regional Morphological and Mechanical Characteristics in the Human Thoracic Vertebral Trabecular Bones (인체 흉추 해면골의 영역별 형태학적 및 기계적 특성 연구)

  • Lee, Tae-Woo;Woo, Dae-Gon;Ko, Chang-Young;Kim, Han-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.134-141
    • /
    • 2010
  • This study analyzed the regional morphological and mechanical characteristics of vertebrae by using micro-computed tomography (micro-CT) and micro finite element analysis (FEA). For the present study, the $12^{th}$ human thoracic vertebral bones (an 85-years female and a 48-years male) were used. These were scanned by using micro-CT. Structural parameters were evaluated from the acquired 20 image data for fifteen $4{\times}4mm^2$ regions (five regions in respective layers of superior, middle and inferior part) in the thoracic vertebral trabecular bones. $4{\times}4{\times}4mm^3$ cubic finite element models of each regions were created at $70{\mu}m$ voxel resolution to investigate effective modulus ($E^+$). The present study indicated that there were significant differences in morphological and elastic mechanical characteristics of each region. There are close relationship between effective modulus and structural model index (SMI) in the bone of the 48-years male and between effective modulus and bone volume fraction (BV/TV) in the bone of the 85-years female. In addition, the effective modulus of central regions is about 80% stiffer than that of lateral regions at transverse plane. These findings may be likely to explain the previous result that a change of loading distribution of the vertebral trabecular bones is caused by spinal curvature and nucleus pulpous degeneration of the intervertebral disc.