Browse > Article
http://dx.doi.org/10.12989/cme.2021.3.3.221

Micro-CT image-based reconstruction algorithm for multiscale modeling of Sheet Molding Compound (SMC) composites with experimental validation  

Lim, Hyoung Jun (Department of Aerospace Engineering, Seoul National University)
Choi, Hoil (Department of Aerospace Engineering, Seoul National University)
Yoon, Sang-Jae (Research & Development Division, Hyundai Motor Company)
Lim, Sang Won (Research & Development Division, Hyundai Motor Company)
Choi, Chi-Hoon (Research & Development Division, Hyundai Motor Company)
Yun, Gun Jin (Department of Aerospace Engineering, Seoul National University)
Publication Information
Composite Materials and Engineering / v.3, no.3, 2021 , pp. 221-239 More about this Journal
Abstract
This paper presents a multiscale modeling method for sheet molding compound (SMC) composites through a novel bundle packing reconstruction algorithm based on a micro-CT (Computed Tomography) image processing. Due to the complex flow pattern during the compression molding process, the SMC composites show a spatially varying orientation and overlapping of fiber bundles. Therefore, significant inhomogeneity and anisotropy are commonly observed and pose a tremendous challenge to predicting SMC composites' properties. For high-fidelity modeling of the SMC composites, the statistical distributions for the fiber orientation and local volume fraction are characterized from micro-CT images of real SMC composites. After that, a novel bundle packing reconstruction algorithm for a high-fidelity SMC model is proposed by considering the statistical distributions. A method for evaluating specimen level's strength and stiffness is also proposed from a set of high-fidelity SMC models. Finally, the proposed multiscale modeling methodology is experimentally validated through a tensile test.
Keywords
composite materials; finite element method; multiscale modeling; reconstruction algorithm; sheet molding compound;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhao, J., Su, D.X., Yi, J.M., Cheng, G., Turng, L.S. and Osswald, T. (2020), "The effect of micromechanics models on mechanical property predictions for short fiber composites", Compos. Struct., 244, 112229. https://doi.org/10.1016/j.compstruct.2020.112229.   DOI
2 Zhou, J., Qi, L. and Gokhale, A.M. (2016), "Generation of three-dimensional microstructure model for discontinuously reinforced composite by modified random sequential absorption method", J. Eng. Mater. Technol., 138(2), 021001. https://doi.org/10.1115/1.4032152.   DOI
3 Zhu, F.Y., Jeong, S., Lim, H.J. and Yun, G.J. (2018), "Probabilistic multiscale modeling of 3D randomly oriented and aligned wavy CNT nanocomposites and RVE size determination", Compos. Struct., 195, 265-275. https://doi.org/10.1016/j.compstruct.2018.04.060.   DOI
4 Gorthofer, J., Meyer, N., Pallicity, T.D., Schottl, L., Trauth, A., Schemmann, M., Hohberg, M., Pinter, P., Elsner, P., Henning, F., Hrymak, A., Seelig, T., Weidenmann, K., Karger, L. and Bohlke, T. (2019), "Virtual process chain of sheet molding compound: Development, validation and perspectives", Compos. Part B Eng., 169, 133-147. https://doi.org/10.1016/j.compositesb.2019.04.001.   DOI
5 Tang, H., Chen, Z., Xu, H., Liu, Z., Sun, Q., Zhou, G., Yan, W., Han, W. and Su, X. (2020), "Computational micromechanics model based failure criteria for chopped carbon fiber sheet molding compound composites", Compos. Sci. Technol., 200, 108400. https://doi.org/10.1016/j.compscitech.2020.108400.   DOI
6 Lim, H.J., Choi, H., Zhu, F.Y., Kerekes, T.W. and Yun, G.J. (2020), "Multiscale damage plasticity modeling and inverse characterization for particulate composites", Mech. Mater., 149, 103564. https://doi.org/10.1016/j.mechmat.2020.103564.   DOI
7 Abrams, L.M. and Castro, J.M. (2003), "Predicting molding forces during sheet molding compound (SMC) compression molding. I: Model development", Polym. Compos., 24(3), 291-303. https://doi.org/10.1002/pc.10029.   DOI
8 Advani, S.G. and Tucker, C.L. (1987), "The use of tensors to describe and predict fiber orientation in short fiber composites", J. Rheol., 31(8), 751-784. https://doi.org/10.1122/1.549945.   DOI
9 Wilkinson, A.N. and Ryan, A.J. (1998), Polymer Processing and Structure Development, Springer, Netherlands.
10 Yu, J., Zhou, C. and Zhang, H. (2017), "A micro-image based reconstructed finite element model of needlepunched C/C composite", Compos. Sci. Technol., 153, 48-61. https://doi.org/10.1016/j.compscitech.2017.09.029.   DOI
11 Tamboura, S., Ayari, H., Shirinbayan, M., Laribi, M.A., Bendaly, H., Sidhom, H., Tcharkhtchi, A. and Fitoussi, J. (2020), "Experimental and numerical multi-scale approach for Sheet-Molding-Compound composites fatigue prediction based on fiber-matrix interface cyclic damage", Int. J. Fatigue, 135, 105526. https://doi.org/10.1016/j.ijfatigue.2020.105526.   DOI
12 Doghri, I. and Ouaar, A. (2003), "Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms", Int. J. Solid Struct., 40(7), 1681-1712. https://doi.org/10.1016/S0020-7683(03)00013-1.   DOI
13 Anagnostou, D., Chatzigeorgiou, G., Chemisky, Y. and Meraghni, F. (2018), "Hierarchical micromechanical modeling of the viscoelastic behavior coupled to damage in SMC and SMC-hybrid composites", Compos. Part B Eng., 151, 8-24. https://doi.org/10.1016/j.compositesb.2018.05.053.   DOI
14 Cabrera-Rios, M. and Castro, J.M. (2006), "An economical way of using carbon fibers in sheet molding compound compression molding for automotive applications", Polym. Compos., 27(6), 718-722. https://doi.org/10.1002/pc.20257.   DOI
15 Doghri, I., Brassart, L., Adam, L. and Gerard, J.S. (2011), "A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites", Int. J. Plasticity, 27(3), 352-371. https://doi.org/10.1016/j.ijplas.2010.06.004.   DOI
16 Feder, J. (1980), "Random sequential adsorption", J. Theor. Biol., 87(2), 237-254. https://doi.org/10.1016/0022-5193(80)90358-6.   DOI
17 Kim, Y. and Yun, G.J. (2018), "Effects of microstructure morphology on stress in mechanoluminescent particles: Micro CT image-based 3D finite element analyses", Compos. Part A Appl. S., 114, 338-351. https://doi.org/10.1016/j.compositesa.2018.08.033.   DOI
18 Chen, Z., Huang, T., Shao, Y., Li, Y., Xu, H., Avery, K., Zeng, D., Chen, W. and Su, X. (2018), "Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction", Compos. Struct., 188, 25-38. https://doi.org/10.1016/j.compstruct.2017.12.039.   DOI
19 Feraboli, P., Peitso, E., Deleo, F., Cleveland, T. and Stickler, P.B. (2009), "Characterization of prepreg-based discontinuous carbon fiber/epoxy systems", J. Reinf. Plast. Comp., 28(10), 1191-1214. https://doi.org/10.1177/0731684408088883.   DOI
20 Gorthofer, J., Schneider, M., Ospald, F., Hrymak, A. and Bohlke, T. (2020), "Computational homogenization of sheet molding compound composites based on high fidelity representative volume elements", Computat. Mater. Sci., 174, 109456. https://doi.org/10.1016/j.commatsci.2019.109456.   DOI
21 Lim, H.J., Choi, H., Lee, M.J. and Yun, G.J. (2021), "An efficient multi-scale model for needle-punched Cf/SiCm composite materials with experimental validation", Compos. Part B Eng., 217, 108890. https://doi.org/10.1016/j.compositesb.2021.108890.   DOI
22 Kravchenko, S.G., Sommer, D.E., Denos, B.R., Favaloro, A.J., Tow, C.M., Avery, W.B. and Pipes, R.B. (2019), "Tensile properties of a stochastic prepreg platelet molded composite", Compos. Part A Appl. S., 124, 105507. https://doi.org/10.1016/j.compositesa.2019.105507.   DOI
23 Li, Y., Chen, Z., Su, L., Chen, W., Jin, X. and Xu, H. (2018), "Stochastic reconstruction and microstructure modeling of SMC chopped fiber composites", Compos. Struct., 200, 153-164. https://doi.org/10.1016/j.compstruct.2018.05.079.   DOI
24 Lim, H., Choi, H., Lee, M.J. and Yun, G.J. (2020), "Elasto-plastic damage modeling and characterization of 3D needle-punched Cf/SiCm composite materials", Ceram. Int., 46(10), 16918-16931. https://doi.org/10.1016/j.ceramint.2020.03.271.   DOI
25 Martulli, L.M., Muyshondt, L., Kerschbaum, M., Pimenta, S., Lomov, S.V. and Swolfs, Y. (2019), "Carbon fibre sheet moulding compounds with high in-mould flow: Linking morphology to tensile and compressive properties", Compos. Part A Appl. S., 126, 105600. https://doi.org/10.1016/j.compositesa.2019.105600.   DOI
26 Jeong, S., Zhu, F., Lim, H., Kim, Y. and Yun, G.J. (2019), "3D stochastic computational homogenization model for carbon fiber reinforced CNT/epoxy composites with spatially random properties", Compos. Struct., 207, 858-870. https://doi.org/10.1016/j.compstruct.2018.09.025.   DOI
27 Choi, H.I., Zhu, F.Y., Lim, H. and Yun, G.J. (2019), "Multiscale stochastic computational homogenization of the thermomechanical properties of woven Cf/SiCm composites", Compos. Part B Eng., 177, 107375. https://doi.org/10.1016/j.compositesb.2019.107375.   DOI
28 Eshelby, J.D. and Peierls, R.E. (1957), "The determination of the elastic field of an ellipsoidal inclusion, and related problems", Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 241(1226), 376-396. https://doi.org/10.1098/rspa.1957.0133.   DOI
29 Fladr, J., Bily, P. and Broukalova, I. (2019), "Evaluation of steel fiber distribution in concrete by computer aided image analysis", Compos. Mater. Eng., 1(1), 49-70. https://doi.org/10.12989/cme.2019.1.1.049.   DOI
30 Lu, J., Khot, S. and Wool, R.P. (2005), "New sheet molding compound resins from soybean oil. I. Synthesis and characterization", Polymer, 46(1), 71-80. https://doi.org/10.1016/j.polymer.2004.10.060.   DOI
31 Luchoo, R., Harper, L.T., Warrior, N.A. and Dodworth, A. (2011), "Three-dimensional numerical modelling of discontinuous fibre composite architectures", Plast. Rubber Compos., 40(6-7), 356-362. https://doi.org/10.1179/1743289810Y.0000000023.   DOI
32 Sommer, D.E., Kravchenko, S.G., Denos, B.R., Favaloro, A.J. and Pipes, R.B. (2020), "Integrative analysis for prediction of process-induced, orientation-dependent tensile properties in a stochastic prepreg platelet molded composite", Compos. Part A Appl. S., 130, 105759. https://doi.org/10.1016/j.compositesa.2019.105759.   DOI
33 Meyer, N., Schottl, L., Bretz, L., Hrymak, A.N. and Karger, L. (2020), "Direct bundle simulation approach for the compression molding process of sheet molding compound", Compos. Part A Appl. S., 132, 105809. https://doi.org/10.1016/j.compositesa.2020.105809.   DOI
34 Martulli, L.M., Alves, M., Pimenta, S., Hine, P.J., Kerschbaum, M., Lomov, S.V. and Swolfs, Y. (2018). "Predictions of carbon fibre sheet moulding compound (CF-SMC) mechanical properties based on local fibre orientation", Proceedings ECCM 18, 18th European Conference on Composite Materials, Athens, Greece, June.
35 Miletic, M., Kumar, L.M., Arns, J.Y., Agarwal, A., Foster, S.J., Arns, C. and Peric, D. (2020), "Gradient-based fibre detection method on 3D micro-CT tomographic image for defining fibre orientation bias in ultra-highperformance concrete", Cement Concrete Res., 129, 105962. https://doi.org/10.1016/j.cemconres.2019.105962.   DOI
36 Motra, H.B., Hildebrand, J. and Dimmig-Osburg, A. (2014), "Assessment of strain measurement techniques to characterise mechanical properties of structural steel", Eng. Sci. Technol., Int. J., 17(4), 260-269. https://doi.org/10.1016/j.jestch.2014.07.006.   DOI
37 Pan, Y., Iorga, L. and Pelegri, A.A. (2008), "Analysis of 3D random chopped fiber reinforced composites using FEM and random sequential adsorption", Computat. Mater. Sci., 43(3), 450-461. https://doi.org/10.1016/j.commatsci.2007.12.016.   DOI
38 Pan, Y., Iorga, L. and Pelegri, A.A. (2008), "Numerical generation of a random chopped fiber composite RVE and its elastic properties", Compos. Sci. Technol., 68(13), 2792-2798. https://doi.org/10.1016/j.compscitech.2008.06.007.   DOI