• Title/Summary/Keyword: micro-AJM

Search Result 14, Processing Time 0.022 seconds

Experimental study for the process conditions of abrasive jet machining by Taguchi method (Taguchi 실험계획법을 이용한 미세입자 분사가공조건 획득에 관한 연구)

  • 박동진;이인환;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.379-382
    • /
    • 2004
  • Abrasive jet machining (AJM) has a large number of parameters such as powder flow rate, air pressure, diameter of abrasive, stand off distance, material hardness and fracture toughness, etc. It is not easy matter to control those parameter. To achieve high accurate machining, in this study, Taguchi method was used to select process parameters. The objective of the optimization was to get higher material removal rate (MRR). From the experiments and analysis, some process parameters were found to make efficient machining.

  • PDF

A study on the Grindability of Fine Ceramics by Experimental Method (실험적 방법에 의한 파인세라믹스의 연삭성에 관한 연구)

  • Kim, Seong-Kyeum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.35-42
    • /
    • 2011
  • This paper describes the characteristics of high speed grinding and the influence of wheel surface speed V and a grindability of the grinding materials. The various fine ceramics pieces was ground by metal and vitrified bonded diamond wheel. The surface roughness of fine ceramics(Zirconia($ZrO_2$), Silicon Carbide(SiC), Silicon Nitride($Si_3N_4$), Alumina($Al_2O_3$)) decreases from $0.05{\mu}m(R_{max})$ to $0.025{\mu}m(R_{max})$ when the wheel speed at grinding point increases the wheel speed. Relation between the temperature at grinding point and surface roughness was linear. Abrasive jet machining(AJM), a specialized from of shot blasting, is considered one of the most helpful micro machining methods for hard and brittle materials such as glasses and ceramics by constant pressure grinding.

A Study of the Effects of Pressure Velocity and Fluid Viscosity in Abrasive Machining Process (입자연마가공에서의 압력 속도 및 유체점도의 영향에 대한 고찰)

  • Yang, Woo-Yul;Yang, Ji-Chul;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • Interest in advanced machining process such as AJM(abrasive jet machining) and CMP(chemical-mechanical polishing) using micro/nano-sized abrasives has been on the increasing demand due to wide use of super alloys, composites, semiconductor and ceramics, which are difficult to or cannot be processed by traditional machining methods. In this paper, the effects of pressure, wafer moving velocity and fluid viscosity were investigated by 2-dimensional finite element analysis method considering slurry fluid flow. From the investigation, it could be found that the simulation results quite corresponded well to the Preston's equation that describes pressure/velocity dependency on material removal. The result also revealed that the stress and corresponding material removal induced by the collision of particle may decrease under relatively high wafer moving speed due to the slurry flow resistance. In addition, the increase in slurry fluid viscosity causes the reduction of material removal rate. It should be noted that the viscosity effect can vary with the shape of abrasive particle.