• Title/Summary/Keyword: micro viscosity

Search Result 180, Processing Time 0.031 seconds

Influence of Micro Pattern Geometry and Printing and Curing Conditions in Gravure Printing on Printing Performance When Using Conductive Ink (패턴 형상, 인쇄 및 건조 조건이 전도성 잉크를 이용한 그라비아 인쇄 결과물의 성능에 미치는 영향)

  • Ahn, Byoung-Joon;Han, Kyung-Joon;Ko, Sung-Lim
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.263-271
    • /
    • 2010
  • e-Printing is a new manufacturing technology for electronic products and is based on traditional printing technology. The electronic products require a large area to facilitate printing and to be economical. A gravure printing system that supports a roll to roll (R2R) manufacturing process can be used to reduce the cost and to achieve the required accuracy. Many factors such as drying method, drying temperature, tension,-printing velocity, ink viscosity, ink conductivity, pattern accuracy, and dot geometry influence the performance of printed electronics. These factors are closely interrelated. The optimum condition for printing must be determined to enhance the performance of the printed electronics. In this study, lines and areas are printed using a gravure printer with conductive ink under different conditions of the above mentioned factors. The results are analyzed to investigate the influence of various factors on the performance of the printed electronics.

Rheological Characteristics of Nitromethane Gel Fuel with Nano/Micro Size of SiO2 Gellant (SiO2계열 젤화제 입자크기에 따른 니트로메탄 젤 추진제의 유변학적 특성 연구)

  • Jang, Jinwu;Kim, Sijin;Han, Seongjoo;Kim, Jinkon;Moon, Heejang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.456-461
    • /
    • 2017
  • In this study, the rheological properties of nitromethane gel propellants on nano/micron sized gelling agent are investigated. Silicon dioxide is used as the gellant with 5 wt%, 6.5 wt% and 8 wt% concentration, respectively, where the measurements are conducted under steady-state shear flow conditions using a rotational rheometer. The nitromethane/silicon dioxide gel showed non-Newtonian flow behavior for the entire experimental shear rate ranges. The gel fuels with nano-sized gellant had a slightly higher viscosity than the gel fuels with micron-sized one for low shear rate range. Additionally, it was found that Herschel-Bulkley model can hardly describe the rheological behavior of nitromethane gel propellant, but the NM model(by Teipel and Forter-Barth) is better suited to explain the rheological behavior of nitromethane gel propellant.

  • PDF

Micro Joining Process Using Solderable Anisotropic Conductive Adhesive (Solderable 이방성 도전성 접착제를 이용한 마이크로 접합 프로세스)

  • Yim, Byung-Seung;Jeon, Sung-Ho;Song, Yong;Kim, Yeon-Hee;Kim, Joo-Heon;Kim, Jong-Min
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.73-73
    • /
    • 2009
  • In this sutdy, a new class ACA(Anisotropic Conductive Adhesive) with low-melting-point alloy(LMPA) and self-organized interconnection method were developed. This developed self-organized interconnection method are achieved by the flow, melting, coalescence and wetting characteristics of the LMPA fillers in ACA. In order to observe self-interconnection characteristic, the QFP($14{\times}14{\times}2.7mm$ size and 1mm lead pitch) was used. Thermal characteristic of the ACA and temperature-dependant viscosity characteristics of the polymer were observed by differential scanning calorimetry(DSC) and torsional parallel rheometer, respectively. A electrical and mechanical characteristics of QFP bonding were measured using multimeter and pull tester, respectively. Wetting and coalescence characteristics of LMPA filler particles and morphology of conduction path were observed by microfocus X-ray inspection systems and cross-sectional optical microscope. As a result, the developed self-organized interconnection method has a good electrical characteristic($2.41m{\Omega}$) and bonding strength(17.19N) by metallurgical interconnection of molten solder particles in ACA.

  • PDF

Monitoring for Constructed Revetments Using Biopolymer Mixed Soil (바이오폴리머 배합토를 이용한 호안 조성과 모니터링)

  • Kim, Myounghwan;Lee, Du Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.645-653
    • /
    • 2021
  • Biopolymer is a general concept for high molecular compounds produced by living organisms. Among them, the xanthan and β-glucan, which are organic polymer mixture produced by micro-organisms, are mainly used to increase the viscosity of a substance. And diluting in water and mixing with sand or clay can increase compressive strength and shear strength. In this study, mixed soil prepared by mixing soil with xanthan and beta-glucan based biopolymers specially developed for the purpose of increasing soil strength was applied to the river bank revetment, and changes during winter were measured using ground LiDAR. As a result of analyzing winter changes in major sections using three-dimensional point cloud data obtained through ground LiDAR, there were no changes to the extent that it was difficult to confirm with the naked eye in the two sections coated with biopolymer blended soil. However, soil loss due to Rill erosion was confirmed in the natural embankment section where biopolymer blended soil was not used.

Spreading and retraction dynamics of a liquid droplet impacting rough hydrophobic surfaces: Formation of micrometer-sized drops (거친 발수 표면에 충돌하는 유체 방울의 팽창 및 수축 역학: 미세 유체 방울의 형성)

  • Kim, Uijin;Kim, Jeong-Hyun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.15-21
    • /
    • 2021
  • In this study, we investigated the dynamics of a droplet impacting rough hydrophobic surfaces through high-speed imaging. Micrometer-sized structures with grooves and pillars were fabricated on smooth Polydimethylsiloxane (PDMS) surfaces by laser ablation. We used Newtonian and non-Newtonian liquid droplets to study the drop impact dynamics. De-ionized water and aqueous glycerin solutions were used for the Newtonian liquid droplet. The solutions of xanthan gum in water were prepared to provide elastic property to the Newtonian droplet. We found that the orientation of the surface structures affected the maximal spreading diameter of the droplet due to the degree of slippage. During the droplet retraction, the dynamic receding contact angles were measured to be around 90° or less. It resulted in the formation of the micro-capillary bridges between the receding droplet and the surface structures. Then, the rupture of the capillary bridge led to the formation of micrometer-sized droplets on top of the surface structures. The size of the microdroplets was found to increase with increasing the impacting velocity and viscosity of the Newtonian liquid droplets. However, the size of the isolated microdroplets decreased with enhancing the elasticity of the droplets, and the size of the non-Newtonian microdroplets was not affected by the impacting velocity.

The Effect of Soil Moisture Stress on the Growth of Barley and Grain Quality (토양수분 스트레스가 보리생육 및 종실품질에 미치는 영향)

  • Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.165-175
    • /
    • 1995
  • To determine the effect of soil moisture stress on growth of barley and grain quality, a pot experiment was carried out for two barley varieties(Olbori and Chogangbori) by using large plastic pot(52cm in diameter and 55cm in depth) filled with sandy loam soil under rain-controlled open green house. By means of measuring soil water potential with micro tensiometer and gypsum block installed at 10cm in soil depth, soil moisture was controlled by sub-irrigation at several irigation points such as -0.05bar, -0.2bar, -0.5bar, -1.0bar, -5.0bar and -10.0bar in soil water potential. The lower soil water potential was controlled, the shorter length of stem and internode became, and the more narrow stem diameter was. Leaf area was significantly decreased when soil water potential was controlled lower than -0.5bar, although chlorophyll content of flag and first leaves was not changed so much. Weight of grain and ear was significantly decreased when soil water potential was lower than -5.0bar and the highest grain yield was obtaind in a plot where soil water potential was controlled at -0.2bar. However, the most efficient water use of Olbori and Chogangbori was obtained at -0.5bar and -1.0bar in water potentials, respectively. Crude protain content, maximum viscosity, consistency and ${\beta}$-glucan content of barley flour increased as soil water potential significantly decreased, especially below -5.0bar, but gelatination temperature decreased as soil water potential decreased.

  • PDF

A Study on the Delay Analysis Methodologies in Construction of Korea High Speed Railway (경부고속철도 건설사업의 공기지연분석에 관한 연구)

  • Yun Sung-Min;Lee Sang-Hyun;Chae Myung-Jin;Han Seung-Heon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.250-255
    • /
    • 2004
  • To analyze delay, Seoul - Daegu line of Korea High Speed Railway was divided into three sections and analyzed independently by the business characteristics. The analysis on the project delay reasons was performed on macro and micro scales. This analytic method was named as 'Macro-Micro Delay Analysis Method (MMDAM)'. The macro scale analysis has three approaches, which are (1) scheduling, (3) structural characteristic, (3) and responsibility of project administrative works. Micro analysis also has three, methodologies which are (1) As Planned Method, (2) As Built method, (3) Modified Time Impact Analysis for analyzing the most influential section which the largest delay occurred. Using elicited project delay reasons from above analysis, the questionnaire was carried out for analyzing the influence of project delay reason. The reasons of the delay were driven from two different aspects (1) structural characteristic and (2) responsibility of the people involved in the project. The reasons that were identified from aforementioned three sections are the factors of the delay of the large-scale government driven projects. Finally, the author suggested the methodology of identifying the project delaying factors. The author also analyzed delay reasons in both the overseas and domestic cases of high rapid railway construction and has elicited some benchmarks for the future projects.

  • PDF

Physicochemical Properties of Brown Rice Flours Produced under Different Drying and Milling Conditions (제조조건에 따른 현미쌀가루 품질특성)

  • Park, Jong-Dae;Choi, Bong-Kyu;Kum, Jun-Seok;Lee, Hyun-You
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.495-500
    • /
    • 2006
  • The physicochemical properties of brown rice flours produced under different drying and milling conditions were investigated. Moisture contents of hot-air dried, microwave dried and zet-milled brown rice flours (BrWZH) were 10.7%,13.7% and 8.0%-8.6%, respectively. Water absorption indices (WAI) and water soluble indices (WSI) of roll-milled brown rice flours (BrWRH) were lower (0.40-0.59 g/g; 0.7-3.0%) than those of zet-milled brown rice flours (0.58-0.79 g/g; 4.0-7.3%). Zet-milled brown rice flours had higher Hunter L values and more damaged starch (94.1-96.8; 28.2%) compared to roll-milled brown rice flours (91.3-91.9: 15.5%). The percentage of damaged starch and L values of brown rice flours increased as particle size of brown rice flours decreased. Roll-milled polished rice flour (Control) had the highest L value and lowest amount of damaged starch (97.1; 8.2%). Control, BrWRH, BrWZH, and ultrafine brown rice flour (HBrZMU) had peak viscosity values of 321, 255, 221, and 162 RVU, respectively and trough viscosity values of 217, 185, 175, and 113 RVU, respectively. Peak and trough viscosity (Rapid Visco Analyzer; RVA) properties of rice floors decreased as the particle size of rice flours decreased. HBrZMU demonstrated a higher onset temperature $(61.1^{\circ}C)$ compared to control $(54.8^{\circ}C)$ by differential scanning calorimetric (DSC). Crystal melting enthalpy $({\Delta}H)$ of control and brown rice flours were 10.4 J/g and 6.1-8.7 J/g, respectively. Results of this study suggested that physicochemical properties of brown rice flours were closely related to their particle size.

Recent research activities on hybrid rocket in Japan

  • Harunori, Nagata
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.1-2
    • /
    • 2011
  • Hybrid rockets have lately attracted attention as a strong candidate of small, low cost, safe and reliable launch vehicles. A significant topic is that the first commercially sponsored space ship, SpaceShipOne vehicle chose a hybrid rocket. The main factors for the choice were safety of operation, system cost, quick turnaround, and thrust termination. In Japan, five universities including Hokkaido University and three private companies organized "Hybrid Rocket Research Group" from 1998 to 2002. Their main purpose was to downsize the cost and scale of rocket experiments. In 2002, UNISEC (University Space Engineering Consortium) and HASTIC (Hokkaido Aerospace Science and Technology Incubation Center) took over the educational and R&D rocket activities respectively and the research group dissolved. In 2008, JAXA/ISAS and eleven universities formed "Hybrid Rocket Research Working Group" as a subcommittee of the Steering Committee for Space Engineering in ISAS. Their goal is to demonstrate technical feasibility of lowcost and high frequency launches of nano/micro satellites into sun-synchronous orbits. Hybrid rockets use a combination of solid and liquid propellants. Usually the fuel is in a solid phase. A serious problem of hybrid rockets is the low regression rate of the solid fuel. In single port hybrids the low regression rate below 1 mm/s causes large L/D exceeding a hundred and small fuel loading ratio falling below 0.3. Multi-port hybrids are a typical solution to solve this problem. However, this solution is not the mainstream in Japan. Another approach is to use high regression rate fuels. For example, a fuel regression rate of 4 mm/s decreases L/D to around 10 and increases the loading ratio to around 0.75. Liquefying fuels such as paraffins are strong candidates for high regression fuels and subject of active research in Japan too. Nakagawa et al. in Tokai University employed EVA (Ethylene Vinyl Acetate) to modify viscosity of paraffin based fuels and investigated the effect of viscosity on regression rates. Wada et al. in Akita University employed LTP (Low melting ThermoPlastic) as another candidate of liquefying fuels and demonstrated high regression rates comparable to paraffin fuels. Hori et al. in JAXA/ISAS employed glycidylazide-poly(ethylene glycol) (GAP-PEG) copolymers as high regression rate fuels and modified the combustion characteristics by changing the PEG mixing ratio. Regression rate improvement by changing internal ballistics is another stream of research. The author proposed a new fuel configuration named "CAMUI" in 1998. CAMUI comes from an abbreviation of "cascaded multistage impinging-jet" meaning the distinctive flow field. A CAMUI type fuel grain consists of several cylindrical fuel blocks with two ports in axial direction. The port alignment shifts 90 degrees with each other to make jets out of ports impinge on the upstream end face of the downstream fuel block, resulting in intense heat transfer to the fuel. Yuasa et al. in Tokyo Metropolitan University employed swirling injection method and improved regression rates more than three times higher. However, regression rate distribution along the axis is not uniform due to the decay of the swirl strength. Aso et al. in Kyushu University employed multi-swirl injection to solve this problem. Combinations of swirling injection and paraffin based fuel have been tried and some results show very high regression rates exceeding ten times of conventional one. High fuel regression rates by new fuel, new internal ballistics, or combination of them require faster fuel-oxidizer mixing to maintain combustion efficiency. Nakagawa et al. succeeded to improve combustion efficiency of a paraffin-based fuel from 77% to 96% by a baffle plate. Another effective approach some researchers are trying is to use an aft-chamber to increase residence time. Better understanding of the new flow fields is necessary to reveal basic mechanisms of regression enhancement. Yuasa et al. visualized the combustion field in a swirling injection type motor. Nakagawa et al. observed boundary layer combustion of wax-based fuels. To understand detailed flow structures in swirling flow type hybrids, Sawada et al. (Tohoku Univ.), Teramoto et al. (Univ. of Tokyo), Shimada et al. (ISAS), and Tsuboi et al. (Kyushu Inst. Tech.) are trying to simulate the flow field numerically. Main challenges are turbulent reaction, stiffness due to low Mach number flow, fuel regression model, and other non-steady phenomena. Oshima et al. in Hokkaido University simulated CAMUI type flow fields and discussed correspondence relation between regression distribution of a burning surface and the vortex structure over the surface.

  • PDF

Interfacial Evaluation of Single-Carbon Fiber/Phenolic and Carbon Nanotube-Phenolic Composites Using Micromechanical Tests and Electrical Resistance Measurements (미세역학시험법과 전기저항 측정을 이용한 탄소섬유/페놀수지 및 탄소나노튜브-페놀수지 복합재료의 계면특성 평가)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Jong-Kyoo;Lee, Woo-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.149-154
    • /
    • 2010
  • Interfacial evaluation was investigated for single-carbon fiber/phenolic and carbon nanotube (CNT)-phenolic composites by micromechanical technique and electrical resistance measurement combined with wettability test. Compressive strength of pure phenol and CNT-phenolic composites were compared using Broutman specimen. The contact resistance of CNT-phenolic composites was obtained using a gradient specimen by two and four-point methods. Surface energies and wettability by dynamic contact angle measurement were measured using Wilhelmy plate technique. Since hydrophobic domains are formed as heterogeneous microstructure of CNT in the surface, the dynamic contact angle exhibited more than $90^{\circ}$. CNT-phenolic composites exhibited a higher apparent modulus than neat phenolic case due to better stress transferring effect. Work of adhesion, $W_a$ between single-carbon fiber and CNT-phenolic composites exhibited higher than neat phenolic resin due to the enhanced viscosity by CNT addition. It was consistent with micro-failure patterns in microdroplet test.