• 제목/요약/키워드: micro time division

Search Result 164, Processing Time 0.032 seconds

Preparation and Impurity Control of the BaTiO3 Coatings by Micro Arc Oxidation Method

  • Ok, Myeong-Ryul;Kim, Ji Hye;Oh, Young-Joo;Hong, Kyung Tae
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.149-152
    • /
    • 2006
  • $BaTiO_3$ coatings were prepared by micro arc oxidation (MAO) method. Only $Ba(OH)_2$ was dissolved in the electrolyte and process time was less than 30 min. Commercial purity $Ba(OH)_2$ (97%) containing $BaCO_3$ as impurity was used in preparing the electrolyte. XRD showed that the coating was composed of largely $BaTiO_3$, and in some process conditions, small quantity of impurity, $BaCO_3$, was characterized in the coating layer. The quantity of $BaCO_3$ could be controlled to negligible quantity by regulating the applied voltage and duration time of the MAO process.

A Study on the Hydriding Reaction of Pre-oxidized Zr Alloys (산화막을 입힌 지르코늄 합금의 수소화 반응에 관한 연구)

  • Kim, Sun-Ki;Bang, Je-Geon;Kim, Dae-Ho;Lim, Ik-Sung;Yang, Yong-Sik;Song, Kun-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.106-112
    • /
    • 2010
  • This paper presents some experimental results on incubation time for massive hydriding of Zr alloys with oxide thickness. Oxide effects experiments on massive hydriding reaction of commercial Zr alloy claddings and pre-oxidized Zr alloys with hydrogen gas were carried out in the temperature range from 300 to $400^{\circ}C$ with thermo-gravimetric apparatus. Experimental results for oxide effects on massive hydriding kinetics show that incubation time is not proportional to oxide thickness and that the massive hydriding kinetics of pre-filmed Zr alloys follows linear kinetic law and the hydriding rate are similar to that of oxide-free Zr alloys once massive hydriding is initiated. There was a difference in micro-structures between oxide during incubation time and oxide after incubation time. Physical defects such as micro-cracks and pores were observed in only oxide after incubation time. Therefore, the massive hydriding of Zr alloys seems to be ascribed to short circuit path, mechacical or physical defects, such as micro-cracks and pores in the oxide rather than hydrogen diffusion through the oxide resulting from the increase of oxygen vacancies in the hypostoichiometric oxide.

A study on the micro pattern replication difference in injection molding (사출성형시 미세패턴 전사성 차이에 관한 연구)

  • Kim, Tae-Hoon;Yoo, Yeong-Eun;Je, Tae-Jin;Park, Yeong-Woo;Roh, Seung- Hwan;Choi, Doo-Sun
    • Design & Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.48-53
    • /
    • 2008
  • We injection molded a thin type of plate and wedge type of plate with micro prizm patterns on its surface and investigated the fidelity of replication of the micro pattern depending on the process parameter such as mold temperature, melt temperature, injection rate or packing pressure. The size of the $90^{\circ}$ prizm pattern is $50{\mu}m$ and the size of the plate is about $335mm{\times}213mm$ and $400mm{\times}400mm$. The thicknesses are 2.6mm and 0.7mm at each edge of the wedge type of plate and 1mm at each edge of the thin type of plate. The fidelity of the replication turned out quite different according to the process parameters and location of the patterns on the plate. We measured the cavity pressure and temperature in real-time during the molding to analyze the effect of the local melt pressure and temperature on the micro pattern replication.

  • PDF

Fabrication of Hot Embossing Plastic Stamps for Microstructures (마이크로 구조물 형성을 위한 핫 엠보싱용 플라스틱 스탬프 제작)

  • Cha Nam-Goo;Park Chang-Hwa;Lim Hyun-Woo;Park Jin-Goo;Jeong Jun-Ho;Lee Eung-Sug
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.589-593
    • /
    • 2005
  • Nanoimprinting lithography (NIL) is known as a suitable technique for fabricating nano and micro structures of high definition. Hot embossing is one of NIL techniques and can imprint on thin films and bulk polymers. Key issues of hot embossing are time and expense needed to produce a stamp withstanding a high temperature and pressure. Fabrication of a metal stamp such as an electroplated nickel is cost intensive and time consuming. A ceramic stamp made by silicon is easy to break when the pressure is applied. In this paper, a plastic stamp using a high temperature epoxy was fabricated and tested. The plastic stamp was relatively inexpensive, rapid to produce and durable enough to withstanding multiple hot embossing cycles. The merits of low viscosity epoxy solutions were a fast degassing and a rapid filling the microstructures. The hot embossing process with plastic stamp was performed on PMMA substrates. The hot embossing was conducted at 12.6 bar, $120^{\circ}C$ and 10 minutes. An imprinted PMMA wafer was almost same value of the plastic stamp after 10 times embossing. Entire fabrication process from silicon master to plastic stamp was completed within 12 hours.

Fabrication of YSZ-based Micro Tubular SOFC Single Cell using Electrophoretic Deposition Process

  • Yu, Seung-Min;Lee, Ki-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.315-319
    • /
    • 2015
  • Yttria-stabilized zirconia (YSZ)-based micro tubular SOFC single cells were fabricated by electrophoretic deposition (EPD) process. Stable slurries for the EPD process were prepared by adding phosphate ester (PE) as a dispersant in order to control the pH, conductivity, and zeta-potential. NiO-YSZ anode support, NiO-YSZ anode functional layer (AFL), and YSZ electrolyte were consecutively deposited on a graphite rod using the EPD process; materials were then co-sintered at $1400^{\circ}C$ for 4 h. The thickness of the deposited layer increased with increasing of the applied voltage and the deposition time. A YSZ-based micro tubular single cell fabricated by the EPD process exhibited a maximum power density of $0.3W/cm^2$ at $750^{\circ}C$.

Development of Method for In-situ Micro-Scale Observation of Stress Corrosion Cracking in High-Temperature Primary Water Environment (원전 고온 1차수 환경에서 응력부식균열의 실시간 마이크로 스케일 관찰 방법 개발)

  • Jung-Ho Shin;Jong-Yeon Lee;Sung-Woo Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.265-272
    • /
    • 2023
  • The aim of this study was to develop a new in-situ observation method and instrument in micro-scale to investigate the mechanism of stress corrosion cracking (SCC) initiation of Ni-base alloys in a high temperature water environment of pressurized water reactors (PWRs). A laser confocal microscope (LCM), an autoclave with diamond window view port, and a slow strain-rate tester with primary water circulation loop system were components of the instrument. Diamond window, one of the core components of the instrument, was selected based on its optical, chemical, and mechanical properties. LCM was used to observe the specimen in micro-scale, considering the experimental condition of a high-temperature primary water environment. Using in-situ method and instrument, it is possible to observe oxidation and deformation of specimen surface in micro-scale through the diamond window in a high-temperature primary water in real-time. The in-situ method and instrument developed in this work can be utilized to investigate effects of various factors on SCC initiation in a high-temperature water environment.

Improvement of the Quality of Dried Wild Vegetables by Micro Oil Sprayed Thermal Air Technique

  • Yonghyun Kim;Yunmi Park;Chul-Woo Kim;Uk Lee;Hyun Ji Eo
    • Korean Journal of Plant Resources
    • /
    • v.35 no.6
    • /
    • pp.778-784
    • /
    • 2022
  • Wild vegetables, such as Cirsium setidens, and Aster scaber, are commonly distributed as dried materials because the wild vegetables lose their freshness quickly after harvest and distribution. Dried wild vegetables require rehydration to use as a food ingredient, and the quality of rehydrated wild vegetables is affected by pre-drying and drying methods. Here, we introduce the newly developed pre-drying and drying method, termed "micro oil sprayed thermal air (MOTA) technique". The three wild vegetables processed by the MOTA technique showed improved rehydration rate and reduced time to achieve maximum rehydration rate. Color characteristics were also improved in C. setidens. These results indicate that the MOTA technique improves the overall quality of rehydrated wild vegetables. It is expected that our findings could enhance the marketability of dried wild vegetables by improving overall quality and reducing preparation time.

A study on the micro-formability of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk metallic glass using micro-forging and finite element method application (Zr 계 벌크비정질합금의 마이크로 단조를 이용한 미세 성형성 평가와 유한요소해석 적용에 관한 연구)

  • Kang S.G.;Na Y.S.;Park K.Y.;Son S.C.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.589-592
    • /
    • 2005
  • Micro-forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). Micro-forming of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk metallic glass(BMG) as a candidate material for this developing process are feasible at a relatively low stress in the supercooled liquid state without any crystallization during hot deformation. In this study, micro-formability of a representative bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$, was investigated for micro-forging of U-shape pattern. Micro-formability was estimated by comparing $R_f$ values $(=A_f/A_g)$, where Ag is cross-sectional area of U groove, and $A_f$ the filled area by material. Microforging process was simulated and analyzed by applying finite element method. FEM simulation results should reasonable agreement with the experimental results when the material properties and simulation conditions such as top die speed, remeshing criteria and boundary conditions tightly controlled. The micro-formability of $Zr_{62}Cu_{17}Ni_{13}Al_8$ was increased with increasing load and time in the temperature range of the supercooled liquid state. Also, FEM Simulation using DEFORM was confirmed to be applicable for the micro-forming process simulation.

  • PDF

Study on the Performance Optimization of Commercial Metal Hydride Refrigerator Powered by Exhaust Gas from Micro Gas Turbine (마이크로가스터빈의 부하에 따른 상용 수소흡장냉동기의 성능 최적화에 관한 연구)

  • Kim Hyoungsik;Sohn Wha-seung;Choi Kyoung-shik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.824-829
    • /
    • 2005
  • MHR(Metal Hydride Refrigerator) powered by MGT exhaust gas is investigated to find out the optimum conditions corresponding to MGT operating powers. There are many factors to affect cooling capacity of MHR. In this study, the effect of switching time, flow rate of brine on cooling temperature and capacity is investigated. The present results show (1) hydrogen reaction is saturated with 25 min switching time at 25 kW MGT power, (2) cooling power shows maximum phenomenon with increasing switching time, (3) optimum switching times are 20 minutes for 15kW MGT power and 15 minutes for 20, 25kW MGT power, (4) according to increasing brine flow rate, cooling capacity shows decrease at 15 kW MGT power and changes little at above 20 kW MGT power.

Fabrication of RFID Micro-pattern using Ultrasonic Vibration (초음파 진동을 이용한 RFID 미세패턴 성형)

  • Oh, Myung-Seok;Lee, Bong-Gu;Park, Myung-Kyu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.344-349
    • /
    • 2017
  • In this study, we developed a process technology to fabricate RFID tag antennas using a one-sheet inlay micro-pattern forming process by press-molding RFID tag antennas on insulation sheet layers, such as polymer films, using ultrasonic longitudinal vibration. In addition, a fine pattern applicable for RFID tag antennas was manufactured using a $25{\mu}m$ thick thin-plate square wire; this is in contrast to the method that uses a conventional round wire. The developed ultrasonic indentation process can be used to fabricate fine pattern of the RFID antenna using one piece of equipment. The simplified manufacturing process technology has a shorter manufacturing time and is more economical. The developed RFID tag antenna forming technique involves pressing the $25{\mu}m$ square wire directly on the thin sheet insulation sheet of maximum thickness $200{\mu}m$, using a 60 kHz ultrasonic tool horn.