• Title/Summary/Keyword: micro pattern

Search Result 927, Processing Time 0.028 seconds

A Basic Study of replication and brightness for micro injection molding with ${\sim}50{\mu}m$ micro-lens pattern mold ($50{\mu}m$ Microlens 패턴 금형의 미세사출성형 전사성과 전광특성 기초연구)

  • Hwang C. J.;Ko Y. B.;Heo Y. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.280-283
    • /
    • 2004
  • Micro-lens patterned micro-mold fabrication method for Light Guiding Plate(LGP), kernel part of LCD-BLU(Back Light Unit), was presented. Instead of erosion dot pattern for LGP optical design, micro-lens pattern, fabricated by LIGA-reflow process, was applied. Optical pattern design method was also developed not only for negative pattern LGP, but also positive pattern LGP. During injection molding process, experimental study was conducted to improve replication quality and brightness of ${\sim}50um$ micro-lens pattern mold. The effect of mold temperature for the replication quality of micro-lens array was studied.

  • PDF

Micro Pattern Forming on Polymeric Circular Tubes by Hydrostatic Pressing (폴리머 원형 튜브 대상 미세 패턴 정수압 성형)

  • Rhim, S.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.507-512
    • /
    • 2014
  • The objective of the current investigation is to establish techniques in micro pattern forming operations of polymeric circular tubes by using hydrostatic pressing. This method was developed and successfully applied to the micro pattern forming on polymeric plates. The key idea of the new technique is to pressurize multiple vacuum-packed substrate-mold stacks above the glass transition temperature of the polymeric substrates. The new process is thought to be a promising micro-pattern fabrication technique for two reasons; first, (hydro-) isostatic pressing ensures a uniform micro-pattern replicating condition regardless of the substrate area and thickness. Second, multiple curved substrates can be patterned at the same time. With the prototype forming machine for the new process, micro prismatic array patterns, 25um in height and 90 degrees in apex angle, were successfully made on the PMMA circular tubes with diameters of 5~40mm. These results show that this process can be also used in the micro pattern forming process on curved plates such as circular tube.

Micro-lens Patterned LGP Injection Mold Fabrication by LIGA-reflow Process (LIGA-reflow 응용 Micro-lens Pattern 도광판 금형 제작)

  • Hwang C.J.;Kim J.D.;Chung J.W.;Ha S.Y.;Lee K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.241-244
    • /
    • 2004
  • Microlens patterned micro-mold fabrication method for Light Guiding Plate(LGP), kernel part of LCD-BLU(Back Light Unit), was presented. Instead of erosion dot pattern for LCP optical design, microlens pattern, fabricated by LIGA-reflow process, was applied. Optical pattern design method was also developed not only for negative pattern LGP, but also positive pattern LGP. In order to achieve flow balance during the micro-injection molding process and dimensional accuracy, two LGP pattern was made in one micro-mold.

  • PDF

Application and Parameter Optimization of EP-MAP Hybrid Machining for Micro Pattern Deburring (미세 패턴의 디버링을 위한 전해-자기연마 복합가공의 적용과 공정 최적화에 관한 연구)

  • Lee, Sung-Ho;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.114-120
    • /
    • 2013
  • An EP(Electrolytic Polishing)-MAP(Magnetic Abrasive Polishing) hybrid process was applied to remove burr on the micro pattern. Micro pattern fabrication processes are combined with micro milling and EP-MAP hybrid process for deburring. Depending on the micro milling conditions which are applied, micro burrs are formed around the side and top of the pattern. The EP-MAP deburring is used to remove these burrs effectively. To optimize removal rate and form error in the EP-MAP hybrid process, a design of experiment was performed. The effect of deburring process and form error of micro pattern are evaluated via SEM images and the results of AFM.

Micro Forming of Metallic Micro-parts and Surface Patterns by Employing Vibrational Load (진동 하중을 이용한 마이크로 부품 및 표면 패턴 성형 기술)

  • Na, Y.S.;Lee, J.H.;Lee, W.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.64-67
    • /
    • 2009
  • Vibrational micro-forming of pyramidal shape patterns was conducted for an Al superplastic alloy, Al 5083 and a Zr-based bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$. A vibrational micro-forming system was specially designed for generating vibrational load by combining a PZT actuator with a signal generator. Single crystal Si micro dies with wet-etched pyramidal patterns were used as master dies for vibrational micro-forming. The micro-formed pattern height was increasing with increasing the frequency of the vibrational load. In particular, the vibrationally-microformed pattern height was similar or even higher than the statically-microformed pattern height when the load frequency exceeded about 125 kHz. It was also observed that the crystal grains affect the surface quality of the microformed pattern and the distribution of the pattern height in the die cavity array.

  • PDF

A Study on the Fabrication Method of Micro-Mold using 2.2inch LGP by the SCS Micro-Lens Pattern (SCS Micro-lens 패턴 적용 휴대폰 도광판 제작용 미세금형 제작에 대한 연구)

  • Oh, J.G.;Kim, J.S.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.60-63
    • /
    • 2011
  • BLU(back light unit) is one of kernel parts of LCD(liquid crystal display) unit. New 3-D micro-lens pattern for LGP(light guide plate), one of the most important parts of LCD-BLU, had been researched. Instead of dot pattern made by chemical etching or laser ablation, SCS(slanted curved surface) micro-lens pattern was designed with optical CAE simulation. This study introduce the method of design using optical CAE simulation for SCS micro-lens, the new fabrication method of micro-mold with SCS micro-lens pattern.

Development of Micro-Optical Patterned LCD-LGP using UV Inclined-Exposure Process (UV 경사노광에 의한 미세광학패턴 LCD-도광판)

  • Hwang C. J.;Kim J. S.;Ko Y. B.;Heo Y. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.51-54
    • /
    • 2005
  • Light Guide Plate (LGP) of LCD-BLU(Back Light Unit) is manufactured by forming optical pattern with $5\~100um$ in diameter on the LGP by means of sand blasting or etching method. However, in order to improve the luminance of LCD-LGP, the design of optical pattern has introduced UV inclined-exposure process in this study. This micro-optical pattern, which has asymmetric elliptical column shaped pattern, can change low viewing-angle to high viewing-angle, as well as it contribute to diffusion of light. As a result, this type of micro-optical pattern can introduce the highly luminance. The PR structure obtained in the stage of lithography has asymmetric elliptical column shape and it is processed into a micro-optical pattern. Optical design with this kind of micro-optical pattern, mold fabrication by electroplating and LGP molding with injection molding are under way.

  • PDF

Development of µ-PIM standard mold with exchangable insert core in order to manufacture micro pattern (마이크로 패턴 성형을 위한 인서트 코어 적용 µ-PIM 표준금형 개발에 관한 연구)

  • Park, Chi Yoel;Seo, Chan-Yoel;Kim, Yongdae
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.29-34
    • /
    • 2017
  • Increased demand for parts with micro-pattern structure made of metals, ceramics, and composites in various fields such as medical ultrasonic sensors, CT collimators, and ultra-small actuator parts. Micro powder injection molding (PIM) is a technology for manufacturing micro size, high volume, complex, precision, net-shape components from either metal or ceramic powder. In the present study, a standard mold with a variable insert core capable of producing various micro patterns was investigated. An injection molding test was performed on a standard mold using a line type micro-pattern core having an aspect ratio of 2, a slenderness ratio of 70, a pattern size of $200{\mu}m$, and a pattern spacing of $150{\mu}m$. During the filling process, the deformation of the mold with large aspect ratio and slenderness ratio was analyzed by the experiment and the numerical simulation according to the position of the gate. We proposed a mold structure that minimizes mold deformation by gate modification and enables uniform pattern filling behavior.

Study on Optical Control Layer for Micro Pattern Shape Change Using Thermal Reflow Process (Thermal Reflow 공정 적용 Micro Pattern 형상 변화를 통한 광 향상 구조층 연구)

  • Seong, Min-Ho;Cha, Ji-Min;Moon, Seong-Cheol;Ryung, Si-Hong;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.306-313
    • /
    • 2015
  • In this study, the change of optical characteristics was studied according to the micro optical pattern provided by photo lithography followed by thermal reflow process. The shape and luminance variation with micro pattern was evaluated by SEM and spectrometers. Also, we analyzed the luminance characteristics using the 3D-optical simulation (Optis works) program. As a result, we found that the radius of curvature(R) in micro pattern is decreased up to 77%($150^{\circ}C$) compared to the radius of curvature at the condition $100^{\circ}C$, which is caused by efficient reflow of organic material without chemical changes. The highest enhancement of brightness with optimum micro pattern was obtained at the condition of $120^{\circ}C$ reflow process. The brightness gain with optical micro patterns is more than 15% at the condition of R=16.95 um, ${\Theta}=77.14^{\circ}$ compared to original optical source. The results of light simulation with various radius of curvature and side angle of pattern shows the similar result of experiment evaluation of light behavior on optical micro patterns. It is regarded that the more effect on light enhancement was contributed by side angle which is effective factor on light reflection, rather than the curvature of micro-patterns.

Micro Pattern Machining on Larger Surface Roll Molds (대면적 롤금형 미세패턴 가공공정 기술)

  • Song, Ki-Hyeong;Lee, Dong-Yoon;Park, Kyung-Hee;Lee, Seok-Woo;Kim, Hyun-Cheol;Je, Tae-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.7-12
    • /
    • 2012
  • In order to cope with the requirements of smaller patterns, larger surfaces and lower costs in the fields of displays, optics and energy, greater attentions are now being paid to the development of micro-pattern machining technology. Compared with flat moulds, large drums with micro patterns (roll moulds) have the advantages of short delivery, ease of manufacturing larger surfaces, and continuous moulding. This paper introduced the machining process technology of the roll moulds for display industry. The environmental effects were discussed and the importance of temperature maintenance was experimentally emphasized. The real time monitoring system for micro machining was introduced. A commercial solution was used to simulate the micro grooving and a deformation model of micro machined pattern was finally introduced.