• Title/Summary/Keyword: micro hard disk drive

Search Result 20, Processing Time 0.029 seconds

A Study on Head-Disk Interactions at Ultra-low Flying Height in Contact Start-Stop (Contact Start-Stop 방식에서의 극저부상 높이에서 Head-Disk Interface Interactions 연구)

  • 조언정
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.102-108
    • /
    • 2003
  • The height of laser bumps has been considered as the limit of the minimum flying height in the contact start-stop (CSS) of hard disk drives. In this paper, tribological interactions at flying height under laser bumps are investigated in a spin stand for development of ultra-low flying head-disk interface. With the reduction of the spinning speed in a spin stand, the flying height is decreased under the height of laser bumps and, then, head-disk interactions are investigated using AE and stiction/friction signals. During seek tests and 20000 cycle-sweep tests, AE and stiction/friction signals are not significantly changed and there are no catastrophic failures of head-disk interface. Bearing analysis and AFM analysis show that there are signs of wear and plastic deformation on the disks. It is suggested that flying height could be as low as and, sometimes, lower than laser bump height.

High precision tracking contorl algorithm for micro electrostatic actuator with nonlinearity (Nonlinearity를 갖는 Micro Electorstatic Actuator의 초정밀 추종제어)

  • 김경한;최현택;송재욱;정완균
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.464-467
    • /
    • 1997
  • In this paper, a high precision track following control algorithm is proposed for micro electrostatic actuator considering of the application for hard disk drive. The micro electrostatic actuator proposed has nonlinear voltage-displacement characteristic in a working range of 0.8.mu.m and has uni-directional movement. Mid range reference and open-loop bias are proposed for the revision of negative position error, and inverse model for linearization.

  • PDF

A Microcatuator for High-Density Hard Disk Drive Using Skewed Electrode Arrays (경사 전극 배열을 이용한 고밀도 하드 디스크의 마이크로 구동부 제작)

  • Choi, Seok-Moon;Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.2
    • /
    • pp.6-15
    • /
    • 2011
  • This paper reports the design and fabrication of a micro-electro-mechanical-system(MEMS)-based electrostatic angular microactuator for a dual-stage servo. The proposed actuator employs a novel electrode pattern named "skewed electrode array(SEA)" scheme. It is shown that SEA has better linearity than a parallel plate type actuator and stronger force than a comb-drive based actuator. The moving and the fixed electrodes are arranged to make the driving force perpendicular to the rotating moment of arm. By changing the electrode overlap length, the magnitude of electrostatic force and stable displacement will be changed. In order to optimize the design, an electrostatic FE analysis was carried out and an empirical force model was established for SEA. A new assembly method which will allow the active electrodes to be located beneath the slider was developed. The active electrodes are connected by inner and outer rings lifted on the base substrate, and the inner and outer rings are connected to platform on which the slider locates. Electrostatic force between active electrodes and platform can be used for exiting out of plane modes, so this provides the possibility of the flying height control. A microactuator that can position the pico-slider over ${\pm}0.5{\mu}m$ using under 20 volts for a 2 kHz fine-tracking servo was designed and fabricated using SoG process.

  • PDF

Study on the tribological Properties of Micro-undulated Surface (미세 요철표면의 마찰마멸특성에 관한 연구)

  • 차금환;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.47-52
    • /
    • 1999
  • In recent years, the micro-tribological behavior of silicon has been the topic of much interest. peformance of thin film under light load is important for potential applications in MEMS. In this work under light load and various humidity, the tribological behavior of undulated surface with various width and shape was Investigated. The results show that undulated surface of linear type had good tribological properties abrasive wear occur depending on the sliding condition. Also the effect of humidity on friction and wear was not important if exist undulation. Finally, undulations on HDD were found to be effective in trapping wear particles.

  • PDF

Inertia Latch Design for Micro Optical Disk Drives (초소형 광디스크 드라이브용 관성 래치 설계)

  • 김경호;김유성;이승엽;유승헌;김수경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1157-1164
    • /
    • 2003
  • Dynamic Load/unload (L/UL) mechanism is an alternative to the contact start stop (CSS) technology which eliminates stiction and wear failure modes associated with CSS. Other benefits of L/UL include increased areal density due to smooth disk surfaces, thinner overcoats, and lower head flying height Improved shock resistance due to elimination of head slap, and reduced power consumption. Inertia latch mechanism becomes important for mobile disk drives because of non operating shock performance. Various types of latch designs have been introduced in hard disk drives to limit a rotary actuator from sudden uncontrolled motion. In this paper, a single spring inertia latch is introduced for a small form optical disk drive, which uses a rotary actuator for moving an optical pick-up. A new small inertia latch with single spring is designed to ensure both feasible and small size. The shock performance of the new inertia latch is experimentally verified.

  • PDF

Wear Characteristics of Diamond-Like Carbon Thin Film for Durability Enhancement of Ultra-precision Systems (초정밀 시스템의 내구성 향상을 위한 다이아몬드상 탄소 박막의 마멸특성에 관한 연구)

  • 박관우;나종주;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.467-470
    • /
    • 2004
  • Diamond-Like Carbon (DLC) thin film is a semiconductor with high mechanical hardness, low friction coefficient, high chemical inertness, and optical transparency. DLC thin films have widespread applications as protective coatings and solid lubricant coatings in areas such as Hard Disk Drive (HDD) and Micro-Electro-Mechanical-Systems (MEMS). In this work, the wear characteristics of DLC thin films deposited on silicon substrates using a DC-magnetron sputtering system were analyzed. The wear tracks were measured with an Atomic Force Microscope (AFM). To identify the sp2 and sp3 hybridization of carbon bonds and other bonds Raman spectroscopy was used. The structural information of DLC thin films was obtained with Fourier transform infrared spectroscopy and wear tests were conducted by using a micro-pin-on-reciprocator tester. Results showed that the wear characteristics were dependent on the sputtering conditions. The wear rate could be correlated with the bonding state of the DLC thin film.

  • PDF

Adaptive Feedforward Rejection of Microactuator Resonance in Hard Disk Drive Dual-stage Actuator Servo (하드디스크 드라이브 마이크로 구동기의 공진 영향 제거를 위한 적응 피드포워드 제어)

  • Oh, Dong-Ho;Lee, Seung-Hi;Baek, Sang-Eun;Na, Hee-Seung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1596-1600
    • /
    • 2000
  • We propose a novel adaptive feed forward controller (AFC) design method for rejecting the effect of micro actuator resonance in the design of dual-stage actuator servo systems for disk drives. Microactuator's resonance is one of important issues in dual-stage actuator servo, which varies up to ${\pm}10%$ per product and even during operation. We derive an adaptive algorithm for the proposed AFC design, which turns out to be identical to the delayed-x LMS algorithm which is a special form of the filtered-x LMS algorithm. In the algorithm, coefficients of the AFC are adapted by the residuals of constrained structure defined in such a way that the coefficients become time invariant. Contrary to the conventional AFC, it considers the phase delay of closed-loop transfer function at resonance frequency for system stability. We also apply an adaptive algorithm with frequency tracking capability. The frequency tracking algorithm is induced by the orthogonality of AFC coefficients. Computer simulations are carried out to demonstrate effect of the proposed AFCs.

  • PDF

Technology for the Multi-layer Nanoimprint Lithography Equipments and Nanoscale Measurement (다층 나노임프린트 리소그래피 시스템 및 나노측정기술)

  • Lee, JaeJong;Choi, KeeBong;Kim, GeeHong;Lim, HyungJun
    • Vacuum Magazine
    • /
    • v.2 no.1
    • /
    • pp.10-16
    • /
    • 2015
  • With the recognition of nanotechnology as one of the future strategic technologies, the R&D efforts have been performed under exclusive supports of governments and private sectors. At present, nanotechnology is at the focus of research and public attention in almost every advanced country including USA, Japan, and many others in EU. Keeping tracks of such technical trends, center for nanoscale mechatronics and manufacturing (CNMM) was established in 2002 as a part of national nanotechnology promotion policy led by ministry of science and technology (MOST) in Korea. It will hold widespread potential applications in electronics, optical electronics, biotechnology, micro systems, etc, with the promises of commercial visibility and competitiveness. In this paper, wafer scale multilayer nanoimprint lithography technology which is well-known the next generation lithography, roll-typed nanoimprint lithography (R-NIL), roll-typed liquid transfer imprint lithography (R-LTIL), the key technology for nanomanufacturing and nanoscale measurement technology will be introduced. Additionally, its applications and some achievements such as solar cell, biosensor, hard disk drive, and MOSFET, etc by means of the developed multilayer nanoimprint lithography system are introduced.

Dual-Stage Servo System using Electrostatic Microactuator for Super-High Density HDD (정전형 마이크로 액추에이터를 이용한 초고밀도 HDD용 Dual-Stage 서보 시스템)

  • Kim, Seung-Han;Seong, U-Gyeong;Lee, Hyo-Jeong;Lee, Jong-Won;Choe, Jeong-Hun;An, Yeong-Jae;Jeon, Guk-Jin;Kim, Bong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.153-160
    • /
    • 1999
  • Dual-stage servo system for super-high density HDD has the chances of being composed of the coarse actuator(VCM) for track-seeking control and the fine actuator(microactuator) for-following control in near future. This paper presents the concept design of dual-stage servo system and the track-following control using an electrostatic microactuator for super-high density HDD. The electrostatic microactuator is designed and fabricated by MEMS(micro-electro-mechanical system) process. Both the nonlinear plant(voltage/displacement-to-electrostatic force) and the linear plant(electrostatic force-to-displacement) of the microactuator are established. Inverse function of the nonlinear plant is employed for a feedforward nonlinear compensator design. And feedforward control effect of this compensator is shown by time-domain experiments. A track-following feedback controller is designed using the feedback nonlinear compensator which is derived from the feedforward nonlinear compensator. The track-following control experiment is done to show the control efficiency of the proposed control system. And, excellent track-following control performance(2.21kHz servo-bandwidth, 7.51dB gain margin, $50.98^{\circ}$phase margin) is achieved by the proposed control system.

  • PDF

Evaluation of Machining Characteristics and Performance Analysis of Air-Lubricated Dynamic Bearing (공기동압베어링의 성능 해석 및 가공특성 평가)

  • Baek, Seung-Yub;Kim, Kwang-Lae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5412-5419
    • /
    • 2011
  • The need is growing for high-speed spindle because various equipment are becoming more precise, miniaturization and high speed with the development of industries. Air-lubricated dynamic bearings are widely used in the optical lithographic manufacturing of wafers to realize nearly zero friction for the motion of the stage. Air-lubricated dynamic bearing can be used in high-speed, high-precision spindle system and hard disk drive(HDD) because of its advantages such as low frictional loss, low heat generation, averaging effect leading better running accuracy. In the paper, numerical analysis is undertaken to calculate the performance of air-lubricated dynamic bearing with herringbone groove. The static performances of herringbone groove bearings which can be used to support the thrust load are calculated. Electrochemical micro machining($EC{\mu}M$) which is non-contact ultra precision machining method has been developed to fabricate the air-lubricated dynamic bearing and optimum parameters which are inter electrode gap size, concentration of electrolyte, machining time are simulated using numerical analysis program.