• Title/Summary/Keyword: micro fuel cell

Search Result 162, Processing Time 0.036 seconds

Power Balancing Strategy in the Microgrid During Transient (마이크로그리드 과도상태 시 전력 수급 균형 전략)

  • Seo, Jae-Jin;Lee, Hak-Ju;Jung, Won-Wook;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.707-714
    • /
    • 2010
  • When problems such as line fault, breakdown of a substation or a generator, etc. arise on the grid, the Microgrid is designed to be separated or isolated from the grid. Most existing DGs(Distributed Generators) in distribution system use rotating machine. However, new DGs such as micro gas turbine, fuel cell, photo voltaic, wind turbine, etc. will be interfaced with the Microgrid through an inverter. So the Microgrid may have very lower inertia than the conventional distribution system. By the way, the rate of change of frequency depends on the inertia of the power system. Moreover, frequency has a strong coupling with active power in power system. Because the frequency of the Microgrid may change rapidly and largely during transient, appropriate and fast control strategy is needed for stable operation of the Microgrid. Therefore, this paper presents a power balancing strategy in Microgrid during transient. Despite of strong power or frequency excursions, power balancing in the Microgrid can be maintained.

Catalytic Combustion Characteristics of Hydrogen-Air Premixture in a Millimeter Scale Monolith Coated with Platinum (밀리미터 스케일 촉매 연소기에서의 수소-공기 예혼합 가스의 촉매 연소 특성)

  • Choi, Won-Young;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.1
    • /
    • pp.20-26
    • /
    • 2005
  • In the present study, catalytic combustion of hydrogen-air premixture in a millimeter scale monolith coated with Pt catalyst was investigated. As the combustor size decreases, the heat loss increases in proportion with the inverse of the scale of combustion chamber and combustion efficiency decreases in a conventional type of combustor. Combustion reaction assisted by catalyst can reduce the heat loss by decreasing the reaction temperature at which catalytic conversion takes place. Another advantage of catalytic combustion is that ignition is not required. Platinum was coated by incipient wetness method on a millimeter scale monolith with cell size of $1{\times}1mm$. Using this monolith as the core of the reaction chamber, temperatures were recorded at various locations along the flow direction. Burnt gas was passed to a gas chromatography system to measure the hydrogen content after the reaction. The measurements were made at various volume flow rate of the fuel-air premixture. The gas chromatography results showed the reaction was complete at all the test conditions and the reacting species penetrated the laminar boundary layer at the honeycomb and made contact with the catalyst coated surface. At all the measuring locations, the record showed monotonous increase of temperature during the measurement duration. And the temperature profile showed that the peak temperature is reached at the point nearest to the gas inlet and decreasing temperature along the flow direction.

  • PDF

Experiment of CO Cleaning Process in DME Autothermal Reformate Gas for PEMFC Application (고분자 전해질 연료전지 적용을 위한 DME 자열개질가스 내 CO제거 공정 특성 연구)

  • Choi, Seung-Hyeon;Bae, Joong-Myeon
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.4
    • /
    • pp.474-480
    • /
    • 2011
  • Hydrocarbon is required to be converted to pure hydrogen without carbon monooxide (CO) for polymer exchange membran fuel cell (PEMFC) applications. In this paper, CO cleaning processes as the downstream of Dimethyl ehter (DME) autothermal reforming process were performed in micro-reactors. Our study suggested two kinds of water gas shift (WGS) reaction process: High Temperature shift (HTS) - Low Temperature shift (LTS), Middle temperature shift (MTS). Firstly, using perovskite catalyst for MTS was decreased effieiciency since methanation. Using HTS-LTS the CO concentration was decreased about 2% ($N_2$ & $H_2O$ free) with the reaction temperature of $420^{\circ}C$ and $235^{\circ}C$ for HTS and LTS, respectively. As the final stage of CO cleaning process, preferential oxidation (PROX) was applied. The amount of additional oxygen need 2 times of stoichiometric at $65^{\circ}C$. The total conversion reforming efficiency of 75% was gained.

Characterization of Microfluidic Channels using DVD Pick-up Fluorescent Scanner (광 픽업 방식 형광스캐너를 이용한 미소유체 특성 분석)

  • Yim, Vit;Kim, Jae-Hyun;Lee, Seung-Yop;Park, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1102-1106
    • /
    • 2008
  • Microfluidics deals with the behavior, precise control and manipulation of fluids at a micro scale. It has become increasingly prevalent in various applications such as biomedical applications (diagnostics, therapeutics, and cell/tissue engineering), inkjet head, and fuel cells etc. The issue of inspection and characterization of microfluidics has emerged as a major consideration in design, fabrication, and detection of microfluidic devices. In this paper, we characterize a diffusion based mixing in Y-microchannel using a fluorescent optical scanner based on a DVD pick-up module, which is widely used in optical storages. Using fluorescent dye, we measure the fluorescent intensity that represents the mixing patterns in Y-microchannel. We also compare these experimental results with computational fluid dynamics (CFD) simulation ones. It is shown that the proposed optical scanner can be used as an alternative measurement system with high performance and cost-effectiveness, compared to conventional optical tools such as epifluorescent microscopes using high resolution CCD camera and confocal microscopes with photomultiplier (PMT) detectors.

Development of Hardware Simulator for Operation Analysis of DC Microgrid (DC 마이크로그리드의 동작분석을 위한 하드웨어 시뮬레이터 개발)

  • Lee, Ji-Heon;Kim, Won-Yong;Kim, Jong-Won;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.577-586
    • /
    • 2011
  • This paper describes the development of hardware simulator for the operation analysis of DC microgrid. The hardware simulator consists of several distributed power sources such as a wind power generation, solar power and fuel cell, and two energy storages such as a supercapacitor and battery. The main controller which performs a role of energy management and state monitoring is connected with the local controller in each power source and storage through ethernet-based communication link. The developed hardware simulator can be utilized to analyze the performance DC microgrid with practical manner.

A Novel Non-Isolated DC-DC Converter with High Efficiency and High Step-Up Voltage Gain (고효율 및 고변압비를 가진 새로운 비절연형 컨버터)

  • Amin, Saghir;Tran, Manh Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.11-13
    • /
    • 2019
  • This paper proposes a novel high step-up non-isolated DC-DC converter, suitable for regulating dc bus in various inherent low voltage micro sources especially for photovoltaic (PV) and fuel cell sources. This novel high voltage Non-isolated Boost DC-DC converter topology is best replacement, where high voltage conversion ratio is required without the transformer and also need continuous input current. Since the proposed topology utilizes the stack-based structure, the voltage gain, and the efficiency are higher than other conventional non-isolated converters. Switches in this topology is easier to control since its control signal is grounding reference. Also, there is no need of extra gate driver and extra power supply for driver circuit, which reduces the cost and size of system. In order to show the feasibility and practicality of the proposed topology principle operation, steady state analysis and simulation result is presented and analyzed in detail. To verify the performance of proposed converter and theoretical analysis 360W laboratory prototype is implemented.

  • PDF

A Study on Microstructure and Mechanical Properties of Modified 9Cr-1Mo and 9Cr-0.5Mo-2W Steels for nuclear Power Plant (원자력용 개량 9Cr-1Mo 및 9Cr-0.5Mo-2W 강의 미세조직과 기계적 특성 연구)

  • Kim, Seong-Ho;Song, Byeong-Jun;Han, Chang-Seok;Guk, Il-Hyeon;Ryu, U-Seok
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1137-1143
    • /
    • 1999
  • Microstructure and mechanical properties of Mod.9Cr-1Mo and W added 9Cr-0.5Mo2W steels were investigated for liquid metal reactor (LMR) heat exchange tube. The tempering temperatures at which cell structure was formed were $700^{\circ}C$ for Mod.9Cr-1Mo steel and $750^{\circ}C$ for W added 9Cr0.5Mo-2W steel. indicating the recovery of dislocation was delayed by the addition of W. 9Cr-0.5Mo-2W steel had the same kinds of precipitates with Mod.9Cr-1Mo steel, but the W was included in the precipitates in 9Cr-0.5Mo-2W steel. Micro-hardness and ultimate tensile strength of 9Cr-0.5Mo-2W steel were higher than those of Mod.9Cr-1Mo steel. The impact property of Mod.9Cr-1Mo steel was superior to that of 9Cr-0.5Mo-2W steel.

  • PDF

A Study for Analysis of Micro Heat Grid Configuration and Deduction of Optimal Size in Hydrogen Cities (수소도시 내 마이크로 히트그리드 구성 방안 및 최적 규모 산정 연구)

  • JONGJUN LEE;SEUL-YE LIM;KYOUNG A SHIN;NAMWOONG KIM;DO HYEONG KIM;CHEOL GYU PARK
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.6
    • /
    • pp.845-855
    • /
    • 2022
  • In response to climate change, the world is continuing efforts to reduce fossil fuels, expand renewable energy, and improve energy efficiency with the goal of achieving carbon neutrality. In particular, R&D is being made on the value chain covering the entire cycle of hydrogen production, storage, transportation, and utilization in order to shift the energy supply system to focus on hydrogen energy. Hydrogen-based energy sources can produce heat and electricity at the same time, so it is possible to utilize heat energy, which can increase overall efficiency. In this study, calculation of the optimal scale for hydrogen-based cogeneration and the composition of heat sources were reviewed. It refers to a method of the optimal heat source size according to the external heat supply and heat storage to be considered. The results of this study can be used as basic data for establishing a hydrogen-based energy supply model in the future.

Recent Progress in Air Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2007 (설비공학 분야의 최근 연구 동향 : 2007년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.844-861
    • /
    • 2008
  • The papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during the year of 2007 have been reviewed. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro nano fluid, micropump and fuel cell. Traditional CFD was still popular and widely used in research and development. Studies about fans and pumps were performed in the field of fluid machinery. Characteristics of flow and fin shape optimization are studied in the field of piping system. (2) The research works on heat transfer have been reviewed in the field of heat transfer characteristics, heat exchangers, and desiccant cooling systems. The research on heat transfer characteristics includes thermal transport in pulse tubes, high temperature superconductors, ground heat exchangers, fuel cell stacks and ice slurry systems. For the heat 'exchangers, the research on pin-tube heat exchanger, plate heat exchanger, condensers and gas coolers has been cordially implemented. The research works on heat transfer augmenting tubes have been also reported. For the desiccant cooling systems, the studies on the design and operating conditions for desiccant rotors as well as performance index are noticeable. (3) In the field of refrigeration, many papers were presented on the air conditioning system using CO2 as a refrigerant. The issues on the two-stage compression, the oil selection, and the appropriate oil charge were treated. The subjects of alternative refrigerants were also studied steadily. Hydrocarbons, DME and their mixtures were considered and various heat transfer correlations were proposed. (4) Research papers have been reviewed in the field of building facilities by grouping into the researches on heat and cold sources, air conditioning and air cleaning, ventilation and fire research including tunnel ventilation, flow control of piping system, and sound research with drain system. Main focuses have been addressed to the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies were mostly focused on analyzing the indoor environment in various spaces like cars, old tombs, machine rooms, and etc. in an architectural environmental field. Moreover, subjects of various fields such as the evaluation of noise, thermal environment, indoor air quality and development of energy analysis program were researched by various methods of survey, simulation, and field experiment.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2008 (설비공학 분야의 최근 연구 동향: 2008년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.715-732
    • /
    • 2009
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation. system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.