• 제목/요약/키워드: micro fracture

검색결과 432건 처리시간 0.026초

Mechanical and Adhesional Manipulation Technique for Micro-assembly under SEM

  • Saito, S.;Takahashi, K.;Onzawa, T.
    • International Journal of Korean Welding Society
    • /
    • 제2권2호
    • /
    • pp.19-25
    • /
    • 2002
  • In recent years, techniques for micro-assembly with high repeatability under a scanning electron microscope (SEM) are required to construct highly functional micro-devices. Adhesion phenomenon is more significant for smaller objects, because adhesional force is proportional to size of the objects while gravitational force is proportional to the third power of it. It is also known that adhesional force between micro-objects exposed to Electron Beam irradiation of SEM increases with the elapsed time. Therefore, mechanical manipulation techniques using a needle-shaped tool by adhesional force are often adopted in basic researches where micro-objects are studied. These techniques, however, have not yet achieved the desired repeatability because many of these could not have been supported theoretically. Some techniques even need the process of trial-and-error. Thus, in this paper, mechanical and adhesional micro-manipulation are analyzed theoretically by introducing new physical factors, such as adhesional force and rolling-resistance, into the kinematic system consisting of a sphere, a needle-shaped tool, and a substrate. Through this analysis, they are revealed that how the micro-sphere behavior depends on the given conditions, and that it is possible to cause the fracture of the desired contact Interfaces selectively by controlling the force direction in which the tool-tip loads to the sphere. Based on the acquired knowledge, a mode diagram, which indicates the micro-sphere behavior for the given conditions, is designed. By referring to this mode diagram, the practical technique of the pick and place manipulation of a micro-sphere under an SEM by the selective interface fracture is proposed.

  • PDF

MACRO-SHEAR BOND STRENGTH AND MICRO-SHEAR BOND STRENGTH OF CEROMER BONDED TO METAL ALLOY AND FIBER REINFORCED COMPOSITE

  • Park Hyung-Yoon;Cho Lee-Ra;Cho Kyung-Mo;Park Chan-Jin
    • 대한치과보철학회지
    • /
    • 제42권6호
    • /
    • pp.654-663
    • /
    • 2004
  • Statement of problem. According to the fracture pattern in several reports, fractures most frequently occur in the interface between the ceromer and the substructure. Purpose. The aim of this in vitro study was to compare the macro shear bond strength and microshear bond strength of a ceromer bonded to a fiber reinforced composite (FRC) as well as metal alloys. Material and methods. Ten of the following substructures, type II gold alloy, Co-Cr alloy, Ni-Cr alloy, and FRC (Vectris) substructures with a 12 mm in diameter, were imbedded in acrylic resin and ground with 400, and 1, 000-grit sandpaper. The metal primer and wetting agent were applied to the sandblasted bonding area of the metal specimens and the FRC specimens, respectively. The ceromer was placed onto a 6 mm diameter and 3 mm height mold in the macro-shear test and 1 mm diameter and 2 mm height mold in the micro-shear test, and then polymerized. The macro- and micro-shear bond strength were measured using a universal testing machine and a micro-shear tester, respectively. The macro- and micro-shear strength were analyzed with ANOVA and a post-hoc Scheffe adjustment ($\alpha$ = .05). The fracture surfaces of the crowns were then examined by scanning electron microscopy to determine the mode of failure. Chi-square test was used to identify the differences in the failure mode. Results. The macro-shear strength and the micro-shear strength differed significantly with the types of substructure (P<.001). Although the ceromer/FRC group showed the highest macroand micro-shear strength, the micro-shear strength was not significantly different from that of the base metal alloy groups. The base metal alloy substructure groups showed the lowest mean macro-shear strength. However, the gold alloy substructure group exhibited the least micro-shear strength. The micro-shear strength was higher than the macro-shear strength excluding the gold alloy substructure group. Adhesive failure was most frequent type of fracture in the ceromer specimens bonded to the gold alloys. Cohesive failure at the ceromer layer was more common in the base metals and FRC substructures. Conclusion. The Vectris substructure had higher shear strength than the other substructures. Although the shear strength of the ceromer bonded to the base metals was lower than that of the gold alloy, the micro-shear strength of the base metals were superior to that of the gold alloy.

X20CrMoV121강과 2.25Cr1Mo강 용접부의 ASP 시험과 CVN 충격 시험의 상관관계에 대한 연구 (A Study on the Correlation between Advanced Small Punch Test and Charpy V-notch Test on X20CrMoV121 and 2.25Cr1Mo steels Weldment)

  • 이동환;김형섭
    • Journal of Welding and Joining
    • /
    • 제26권3호
    • /
    • pp.37-44
    • /
    • 2008
  • Charpy V-Notch test is commonly used to evaluate fracture toughness. However, since the region to be evaluated is limited to bulk material due to the specimen size required, individual evaluation of micro-structures on weldment is very difficult. In this study, ASP(Advanced Small Punch) test was carried out to evaluate material degradation and fracture toughness on the B.M, W.M and each micro-structures of HAZ for X20CrMoV121 and 2.25Cr1Mo steels with artificial aging time. In addition, to evaluate fracture toughness and material degradation of B.M and W.M of X20CrMoV121 steels with aging times, CVN (Charpy V-notch) test was performed. And then the correlation between ASP and CVN test on X20CrMoV121 steels was obtained. Furthermore, through this correlation, material degradation property of each micro-region of the HAZ in weldment, which was impossible to be evaluated by the CVN test, can be estimated and determined.

알루미나 연삭입자의 연삭특성에 관한 연구 (A Study on the Grinding Characteristics of Various Alumina Abrasives)

  • 방진영;하상백;이종찬
    • 한국기계가공학회지
    • /
    • 제3권1호
    • /
    • pp.45-51
    • /
    • 2004
  • In this paper, the relationship between the mechanical properties of alumina abrasives and grinding performance was investigated. Micro vickers hardness and fracture strength of all abrasives used in this study were measured. The grinding experiments were earned out with alumina grinding wheels made by various kinds of alumina abrasives including 32A, WA, ART, ALOMAX, and RA. The performance of such grinding wheel for grinding SKD11 was evaluated by specific grinding energy, grinding-ratio, and surface roughness. The grinding wheels composed by the harder abrasives and the lower fracture strength abrasives showed better grinding performance.

  • PDF

결함 성장을 고려한 수치해석적 성형한계도 예측 (A Numerical Prediction of the Forming Limit Diagram Considering Damage Evolution)

  • 김경태;송정한;이근안;이형욱;김세호;이용신
    • 소성∙가공
    • /
    • 제18권8호
    • /
    • pp.596-600
    • /
    • 2009
  • Finite element simulation is an alternative method to practically find the forming limit diagram(FLD). In this paper, the novel fracture criterion is utilized to predict the FLD in conjunction with finite element analysis for sheet forming. The principal scheme of the fracture criterion in this paper is that growth of the micro voids leads up to fracture in the viewpoint of micro-mechanics. The numerical FLD is verified by results of the out-of plane stretching test using hemispherical punch. The verification is also conducted about two types of material. These results are in good accord with the experimental results. Especially, the proposed scheme is appropriate to predict FLDs for a restricted material with low ductility after the instability point or ultimate tensile strength.

Identification and Three-Dimensional Characterization of Micropore Networks Developed in Granite using Micro-Focus X-ray CT

  • Choo, Chang-Oh;Takahashi, Manabu;Jeong, Gyo-Cheol
    • 지질공학
    • /
    • 제24권2호
    • /
    • pp.179-189
    • /
    • 2014
  • We analyzed the three-dimensional distribution of micropores and internal structures in both fresh and weathered granite using micro-focus X-ray computed tomography (micro-CT). Results show that the pore radius in fresh granite is mostly in the range of $17-50{\mu}m$, the throat radius is in the range of $5-25{\mu}m$, and the coordination number (CN) of pores is less than 10. In contrast, the pore radius in weathered granite is mostly in the range of $20-80{\mu}m$, the throat radius is in the range of $8-30{\mu}m$, and the CN is less than 12. In general, a positive linear relationship exists between pore radius and CN. In addition, both the size and the density of pores increase with an increasing degree of rock weathering. The size of the throats that connect the pores also increases with an increasing degree of weathering, which induces fracture propagation in rocks. Micro-CT is a powerful and versatile approach for investigating the three-dimensional distributions of pores and fracture structures in rocks, and for quantitatively assessing the degree of pore connectivity.

고강도 DP강과 TRIP강의 표면 수소 주입량에 따른 수소취성평가 (The Change of Microstructures According to the Charging Amounts of Hydrogen in High Strength DP Steels and TRIP Steel)

  • 이철치;박재우;강계명
    • 한국표면공학회지
    • /
    • 제45권3호
    • /
    • pp.130-135
    • /
    • 2012
  • Hydrogen charging was electrochemically conducted at high strength DP steels and TRIP steel with varying charging time. The penetration depths and the mechanical properties with charging conditions were investigated through the distribution of micro-hardness and the microstructural observation of the subsurface zone. The micro-Vickers hardness was measured to evaluate the hydrogen embrittlement of subsurface zone in addition to the microscope investigation. It was shown that the hydrogen amounts decreased in DP steels and TRIP steel with increasing hydrogen charging time. As shown by micro-Vickers hardness test and small punch test results, micro-Vickers hardness and SP energy for DP steels and TRIP steel decreased with increasing hydrogen charging time, for constant value of charging current density. SEM investigation results for the hydrogen contained samples showed that the major fracture behavior was brittle fracture which results in dimples on fractured surface and the size of dimples were decreased with increasing hydrogen charging time. These results indicate that hydrogen embrittlement is the major cause for the fracture of high strength steels and also micro-Vickers hardness test and small punch test is a valuable test method for hydrogen embrittlement of high strength sheet steels.

미소 비커스경도에 의한 Cr-Mo-V강의 경년열화 평가 (Evaluation on Degradation of Cr-Mo-V Steel by Micro-Vickers Hardness Measurement)

  • 김정기;남승훈;김엄기
    • 열처리공학회지
    • /
    • 제11권1호
    • /
    • pp.54-61
    • /
    • 1998
  • Since Cr-Mo-V steel has excellent fracture and creep properties at elevated temperature, they are extensively used as steam turbine components such as the turbine rotor. However, the turbine rotor steel used to suffer material degradation during long term service. Therefore, the assessment of the safety and residual life of the turbine rotor is periodically required during service. One of the most convenient techniques for that is the hardness method mainly due to its simplicity and nondestructive characteristics. In this research, six specimens with different aging times of turbine rotor steel were artificially prepared by an isothermal heat treatment at $630^{\circ}C$. The micro Vickers hardnesses of specimens were measured at room temperature. The relationships between the fracture properties and the hardness ratio were investigated. And also an indirect method to evaluate the residual life of degraded turbine rotor was proposed based on the micro Vickers hardness measurement.

  • PDF

304스테인리스강의 고온표면미소 균열의 거동에 관한 기초적 연구 (Behaviors of surface micro-crack of 304 stainless steel at elevated temperature)

  • 서창민;이정주;김영호
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1320-1326
    • /
    • 1988
  • 본 연구에서는 파괴역학적인 해석법과 표면레프리카법을 확장, 적용시켜 피로 -크리프하의 유지시간에 따른 작은 표면균열의 분포상태와 이의 합체, 성장 및 밀도변 화특성을 해석하여 기초적 자료를 얻는다.

반도체 봉지수지의 파괴 인성치 측정 및 패키지 적용 (Fracture Toughness Measurement of the Semiconductor Encapsulant EMC and It's Application to Package)

  • 김경섭;신영의;장의구
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권6호
    • /
    • pp.519-527
    • /
    • 1997
  • The micro crack was occurred where the stress concentrated by the thermal stress which was induced during the cooling period after molding process or by the various reliability tests. In order to estimate the possibility of development from inside micro crack to outside fracture, the fracture toughness of EMC should be measured under the various applicable condition. But study was conducted very rarely for the above area. In order to provide a was to decide the fracture resistance of EMC (Epoxy Molding Compound) of plastic package which is produced by using transfer molding method, measuring fracture is studied. The specimens were made with various EMC material. The diverse combination of test conditions, such as different temperature, temperature /humidity conditions, different filler shapes, and post cure treatment, were tried to examine the effects of environmental condition on the fracture toughness. This study proposed a way which could improve the reliability of LOC(Lead On Chip) type package by comparing the measured $J_{IC}$ of EMC and the calculated J-integral value from FEM(Finite Element Method). The measured $K_{IC}$ value of EMC above glass transition temperature dropped sharply as the temperature increased. The $K_{IC}$ was observed to be higher before the post cure treatment than after the post cure treatment. The change of $J_{IC}$ was significant by time change. J-integral was calculated to have maximum value the angle of the direction of fracture at the lead tip was 0 degree in SOJ package and -30 degree in TSOP package. The results FEM simulation were well agreed with the results of measurement within 5% tolerance. The package crack was proved to be affected more by the structure than by the composing material of package. The structure and the composing material are the variables to reduce the package crack.ack.

  • PDF