• Title/Summary/Keyword: micro fin

Search Result 81, Processing Time 0.026 seconds

Influence of Refrigeration Oil on Evaporation Heat Transfer of R-134a in a Horizontal Micro-Fin Tube (냉동유가 수평 마이크로 핀관내 R-134a의 증발열전달에 미치는 영향)

  • 배상철;강태욱;김정훈;정찬영;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.140-150
    • /
    • 1996
  • CFC-12, which has been used most widely in automobile air conditioners and household refrigerators is scheduled to be phased out soon because of its high ozone depletion potential. Now HFC-134a is suggested as an alternative refrigerant for CFC-12. In this Study, we intended to investigate how PAG oil influence evaporation heat transfer and flow pattern, using R-134a and PAG oil influences evaporation heat transfer and flow pattern, using R-134a and PAG oil in the horizontal miro-fin evaporation tube. Experiments were conducted under the flowing est conditions : mass velocity 86-250kg/$m^2$s, heat flux 5-30 ㎾/$m^2$, oil concentration 0-21 wt.% and saturation temperature 5$^{\circ}C$. Local evaporation heat transfer coefficients were found to be higher at the top, side and bottom of the tube in this order. Average heat transfer coefficients turned out to increase with oil concentration increment up to 3 wt.% oil concentration, whereas heat transfer coefficients gradually decreased over 3 wt.% oil concentration, because of oil-rich liquid film was formed on the heat transfer surface. Flow patterns were rapidly transitioned to annular regimes up to 3 wt.% oil concentration. In case of pure refrigerant, measured heat transfer coefficients in the experiments were similar to those of Kandlikar's correlation.

  • PDF

Prediction and Experiment of Pressure Drop of R22, R407C and R410A on Design Conditions of Condenser (응축기의 설계조건에서 R22, R407C, R410A의 압력강하 예측 및 실험)

  • 김창덕;박일환;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.42-53
    • /
    • 2004
  • An experimental study on the refrigerant-side pressure drop of slit fin-tube heat exchanger has been carried out. A comparison was made between the predictions of previously proposed empirical correlations and experimental data for the pressure drop on design conditions of condenser in micro-fin tube for R22 and its alternatives, R407C (R32/125/134a, 23/25/52 wt.%) and R410A (R32/125, 50/50 wt.%). Experiments were carried out under the conditions of inlet refrigerant temperature of 6$0^{\circ}C$ and mass fluxes varying from 150 to 250 kg/$m^2$s for R22, R407C and R410A. The inlet air conditions are dry bulb temperature of 35$^{\circ}C$, relative humidity of 40% and air velocity varying from 0.68 to 1.43 m/s. Experiments show that pressure drop for R410A and R407C were 17.8∼20.2% and 5∼6.8% lower than those of R22 respectively for the degree of subcooling of 5$^{\circ}C$. For the mass fluxes of 200∼250 kg/$m^2$s, the deviation between the experimental and predicted values for the pressure drop was less than $\pm$20% for R22, R407C and R410A.

Shape Optimization of a Trapezoidal Micro-Channel (사다리꼴 미세유로의 형상최적화)

  • Husain, Afzal;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2666-2671
    • /
    • 2007
  • This work presents microchannel heat sink shape optimization procedure using Kriging method. Design variables relating to microchannel width, depth and fin width are selected, and thermal resistance has been taken as objective function. Design points are selected through a three-level fractional factorial design of sampling method. Navier-Stokes and energy equations for laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with experimental results. Using the numerically evaluated objective function, a surrogate model (Kriging) is constructed and optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of microchannel heat sink under constant pumping power.

  • PDF

Deposition of Diamond-Like Carbon Films on the Air Conditioner Cold Fin (에어컨용 냉각핀의 DLC 박막합성)

  • 김태규;한진영;김상록;김한기
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.242-242
    • /
    • 2003
  • DLC(Diamond-Like Carbon)는 높은 경도, 내마모성, 화학적 안정성, 생체친화성 및 열전도율이 우수하여 VTR 헤드드럼, CRT Gun, Video Tape, 인공골절, 면도날 등에 널리 사용되고 있다. 에어컨용 Al 냉각핀은 높은 냉각성능의 향상으로 인한 전기절전 효과와 내부식성 및 친수성 등이 요구된다. DC-Sputtering법에 의한 에어컨용 알루미늄 냉각핀에 인가전압의 변화 (300V, 500V, 600V)와 증착시간 (3시간, 5시간 증착)의 변화에 따른 DLC 박막을 합성하여 AFM, XRD 및 Raman spectroscopy 측정을 통하여 분석하고, Micro Vickers Hardness 및 Roughness 등을 측정하였다.

  • PDF

Shape Optimization of a Micro-Channel Using Kriging Model (크리깅 모델을 이용한 미세유로의 형상최적설계)

  • Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.733-740
    • /
    • 2007
  • Microchannel heat sink shape optimization is performed using Kriging method. Design variables relating to microchannel width, depth and fin width are selected, and thermal resistance has been taken as objective function. Design points are selected through a three-level fractional factorial design of sampling method. Navier-Stokes and energy equations for laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with experimental results. Using the numerically evaluated objective function, a surrogate model (Kriging) is constructed and optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of microchannel heat sink under constant pumping power.

Seeking Platform Finance as an Alternative Model of Financing for Small and Medium Enterprises in Korea (중소기업 대안금융으로서 플랫폼 금융의 모색)

  • Chung, Jay M.;Park, Jaesung James
    • The Journal of Small Business Innovation
    • /
    • v.20 no.3
    • /
    • pp.49-68
    • /
    • 2017
  • Platform finance is emerging as an alternative finance for SMEs by suggesting a new funding source based on a new technology named FinTech. The essence of this business is the adapting ICT challenges to the financial industry that can adequately reflect risk assessment using Big Data and effectively meet individual risk-return preference. Thus, this is evolving as an alternative to existing finance in the form of P2P loans for Micro Enterprises and supply-chain finance for SMEs that need more working capital. Platform finance in Korea, however, is still at an infant stage and requires policy support. This can be summarized as follows: "Participation of institutional investors and the public sector," meaning that public investors provide seed money for the private investors to crowd in for platform finance. "Negative system in financial regulations," with current regulations to be deferred for new projects, such as Sandbox in the UK. In addition, "Environment for generous use of data," allowing discretionary data sharing for new products," and "Spreading alternative investments," fostering platform finance products as alternative investments in the low interest-rate era.

  • PDF

Experimental Study of a Recuperator with Offset Strip Fins (오프셋 스트립 휜을 가지는 리큐퍼레이터에 대한 실험적 연구)

  • Kim, Taehoon;Do, Kyu Hyung;Han, Yong-Shik;Choi, Byung-Il;Kim, Myungbae
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.72-78
    • /
    • 2015
  • In the present study, a recuperator to improve the thermal efficiency of a micro gas turbine is considered. The counter flow plate-fin heat exchanger with offset strip fins is chosen as the type of the recuperator. From the optimization study as varying design parameters of the recuperator determined from the ideal cycle analysis, the internal structure of the recuperator is determined. The recuperator is made from stainless steel 304. In order to evaluate performance of the recuperator, experimental investigation is performed. The effects of inlet temperature of hot-side of the recuperator on the thermal performance of the recuperator are investigated. As a result, effectiveness of the recuperator obtained from the experiments is well consistent with that obtained from the correlations.

Prediction and Experiment of Pressure Drop of R22 and R134a on Design Conditions of Condenser (응축기의 설계조건에서 R22와 R134a의 압력강하 예측 및 실험)

  • Kang, Shin-Hyung;Byun, Ju-Suk;Kim, Chang-Duk
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.243-249
    • /
    • 2006
  • An experimental study on the refrigerant-side pressure drop of slit fin an tube heat exchanger has been carried out. A comparison was made between the predictions of previously proposed empirical correlations and experimental data for the pressure drop on design conditions of condenser in micro-fin tube for R22 and Rl34a. Experiments were carried out under the conditions of inlet refrigerant temperature of $60^{\circ}C$ and mass fluxes varying from $150\;to\;250\;kg/m^{2}s$ for R22 and Rl34a. The inlet air conditions are dry bulb temperature of $35^{\circ}C$, relative humidity of 40% and air velocity varying from 0.68 to 1.43 m/s. Experiments show that pressure drop for R134a was $22{\sim}22.6%$ higher than R22 for the degree of subcooling $5^{\circ}C$ For the mass fluxes of $200{\sim}250\;kg/m^{2}s$, the deviation between the experimental and predicted values for the pressure drop was less than ${\pm}20%$ for R22 and Rl34a.

Effect of Thermal Contact Resistence on the Heat Transfer Characteristics of Air Flow around the Finned Micro-Channel Tube for MF Evaporator (Micro-Channel형 열교환기에 부착된 핀의 열접촉저항이 열전달 특성에 미치는 영향)

  • Park, Yong-Seok;Sung, Hong-Seok;Sung, Dong-Min;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.121-126
    • /
    • 2021
  • In this study, the effect of thermal contact resistance between pin-channel tubes on the heat transfer characteristics was analytically examined around the channel tubes with the pins attached to two consecutive arranged channel pipes. The numerical results showed that the heat transfer coefficient decreased geometrically as the thermal contact resistance increased, and the corresponding temperature change on the contact surface increased as the thermal contact resistance increased. The thinner the pin, the more pronounced the geometric drop in the heat transfer coefficient. It was confirmed that the higher the height of the pin, the higher was the heat transfer coefficient, however, the greater the size of the thermal contact resistance, the smaller was the heat transfer coefficient. It was found that the temperature change in the inner wall of the channel tube did not significantly affect the heat transfer characteristics owing to the thermal contact resistance. Furthermore, the velocity of air at the entrance of the channel tube was proportional to the heat transfer coefficient due to a decrease in the convective heat resistance corresponding to an increase in the flow rate.

Experiments on Condensation Heat Transfer Characteristics Inside a Microfin Tube with R410A (마이크로 휜관낸 R410A의 응축열전달 특성에 관한 실험적 연구)

  • Han, Dong-Hyeok;Jo, Yeong-Jin;Lee, Gyu-Jeong;Park, Sim-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1470-1477
    • /
    • 2000
  • Due to the ozone depletion and global warming potentials, some refrigerants(CFx and HCFCs) have been rapidly substituted. R410A is considered as the alternative refrigerant of R22 for the air-conditioners used a home and in industry. Experiments on the condensation heat transfer characteristics inside a smooth or a micro-fin tube with R410A are performed in this study. The test tubes 7/9.52 mm in outer diameters and 3 m in length are used. Varying the mass flux of the refrigerant and the condensation temperatures, the average heat transfer coefficients and pressure drop are investigated. It is shown that the heat transfer is enhanced and the amount of pressure drops are larger in the microfin tube than the smooth tube. From the heat transfer enhancement coefficient and the pressure penalty factor, it is found that the high heat transfer enhancement coefficients are obtained in the range of small mass flux while the penalty factors are almost equal.