• Title/Summary/Keyword: micro device

Search Result 995, Processing Time 0.028 seconds

Development of Component of Micro Thermal Device in KAIST (KAIST의 마이크로 열기관 요소 기술 개발)

  • Lee, Dae Hoon;Park, Dae-Eun;Yoon, Euisil;Kwon, Sejin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.482-485
    • /
    • 2002
  • Development projects in KAIST rotted to the micro thermal device is introduced. Multi disciplinary research team is composed by combustion group and semiconductor group in KAIST and catalyst research center in KRICT to develop micro thermal/fluidic device and various items are on development. Among the projects, various kind of componenst that is required by the micro thermal devicesystem is introduced. Technology related to development of micro combustor, Micro igniter, micro fabrication of 3D structure, micro reactor and micro catalyst preparation is introduced.

  • PDF

A Study on Micro-Tip Fabrication by Plating and CMP (도금 및 CMP에 의한 Micro-Tip 제작 공정 연구)

  • Han, Myung-Soo;Park, Chang-Mo;Shin, Gwang-Soo;Ko, Hang-Ju;Kim, Doo-Gun;Hann, S-Wook;Kim, Seon-Hoon;Ki, Hyun-Chul;Kim, Hyo-Jin;Kim, Jang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.152-152
    • /
    • 2009
  • We investigate micro-tip properties as Ni-Co plating and CMP processes for MEMS probe card and units. The micro-tip are fabricated by using Ni-Co plating machine, lapping machine, and chemo-mechanical polisher. In order to get high conductive and reliable micro-tip, we control Co contents and thickness by CMP speed. We have found that about 20-25% of Co contents are required and have to lapping speed of 30 rpm. Also, we investigate photolithography and Ni-Co plating processes conditions for the one-step and the three-step micro-tips.

  • PDF

Fabrication of Micro-inductor and Capacior For RF MEMS Applications

  • Cho, Bek-Hee;Lee, Jae-Ho;Bae, Young-Ho;Cho, Chan-Sub;Lee, Jong-Hyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.2
    • /
    • pp.102-110
    • /
    • 2002
  • In this paper, we present the fabrication of tunable capacitors and 3-dimensional inductors. This work was related to fabricated 3-dimensional device for need of micro device in developing new intelligence age. This device was fabricated by electroplating used electroplating PR and high-vacuum evaporation of metal. Fabricated micro-inductor is consisted of air-bridge on electroplating rod and electroplated core. Micro-capacitor is consisted of thin metal membrane and electroplated core. Electroplating material is used Cu metal solvent. Air-gap between metal-layers function as almost perfect isolation layer. The most advantage of our micro-inductor and micro-capacitor compared to present device is a possibility that can fabricate on RF MEMS(microelectro-mechanical systems) application with high performance and various function. In this paper, we present the fabrication of tunable capacitors and 3-dimensional inductors. This work was related to fabricated 3-dimensional device for need of micro-device in developing new intelligence age. This device was fabricated by electroplating used electroplating PR and high-vacuum evaporation of metal. Fabricated micro-inductor is consisted of air-bridge on electroplating rod and electroplated core. Micro-capacitor is consisted of thin metal membrane and electroplated core. Electroplating material is used Cu metal solvent. Air-gap between metal-layers function as almost perfect isolation layer. The most advantage of our micro-inductor and micro-capacitor compared to present device is a possibility that can fabricate on RF MEMS application with high performance and various functions.

A Design of Impact Control Device for High-speed Mounting of Micro-Chips (소형 칩의 고속 표면실장을 위한 충격력 제어 장치의 설계)

  • 이덕영;김병만;심재홍;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.121-121
    • /
    • 2000
  • This paper presents a design of macro-micro system for high-speed mounting of micro-chips. A macro motion device is driven by DC servomotor and ball screw mechanism. To obtain fast response, a micro motion device utilizes a precision elector magnetic actuator In order to reduce peak impact force, We evaluate the design parameters that have an effect on it. And a characteristic of response is simulated using PID controller in velocity and force control.

  • PDF

Micro-bioreactor for Physical stimulation of endothelial cells using micro-bead impact by gravitational force (미세입자의 중력을 이용한 세포 자극기 개발에 관한 연구)

  • Kim, Young-Hun;Kim, Tae-Jin;Jung, Hyo-Il
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1690-1691
    • /
    • 2008
  • Micro cell stimulation device is interested in many researchers because it has several advantages such as saving time and reagents. We introduce new micro-bioreactor using micro bead and conduct cell stimulation experiments to verify effective time because cell have operated by cell-cycle (G1, S, G2, and M phase). Micro-bioreactor was made by soft lithography and CAPE (calf pulmonary artery endothelial cell) was cultured in PDMS (polydimethylsiloxane) micro device for 12 hour and cell starvation process was performed for 24 hours. Micro glass beads were rolled only by slating device every hour during 15 hour because of minimizing other stimulation force like flow and pressure. The result represents that cells under exposed under micro bead stimulation show higher growth rate than normal condition and earlier and later stimulation time are more effective.

  • PDF

Design for Micro-stereolithography using Axiomatic Approach (공리적 설계를 이용한 마이크로 광 조형 장치의 설계)

  • 이승재;이인환;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.106-111
    • /
    • 2004
  • Micro-stereolithography technology has made it possible to fabricate any form of three-dimensional microstructures. It makes a 3D structure by dividing the shape into many slices of relevant thickness along horizontal surface, hardening each layer of slice with a laser, and stacking them up to a desired shape. Until now, however, the micro-stereolithography device was not designed systematically because the key factors governing the device were not considered. In this paper, we designed micro-stereolithography device using axiomatic approach. This paper contains an overview and an analysis of a new proposed system for development of micro-stereolithegraphy device, and detailed descriptions of the activities in this system. The newly designed system offers reduced machine size by minimizing of optical components and decoupled design matrix.

Development of Ultra-Micro Indentation Device using the PZT Actuator (압전구동기를 이용한 초미세 압입장치의 개발)

  • 박기태;박규열;홍동표
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.51-55
    • /
    • 1999
  • Recently, manufacturing work has been transformed to advanced technology intensive form from mass production with a little items required in the past. It was demanded that superior workpiece surface integrity. However, the study of ductile mode machining was proceeded actively.In this paper, it is developed Ultra-Micro Indentation Device using the PZT actuator. Experimentally, by using theUltra-Micro Indentation device, the micro fracture behavior of the silicon wafer was invesgated. It was possible that ductile-brittle transition point in ultimate surface of brittle material can be detected by adding an acoustic emission sensor system to the Ultra-Micro Indentation apparatus.

  • PDF

A Study on the Fracture behavior in Silicon Wafer using the Ultra-Precision Micro Positioning System (초미세 위치결정시스템을 이용한 실리콘 웨이퍼의 파괴거동에 관한 연구)

  • 이병룡
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.38-44
    • /
    • 2000
  • The background of this study lies in he investigation of the formation mechanism of ductile mode(nkanometer-size) chips of brittle materials such as fine ceramics glass and silicon. As the first step to achieve this purpose this paper intends to observe the micro-deformation behavior of these materials in sub${\mu}{\textrm}{m}$ depth indentation tests using a diamond indentor. In this study it was developed Ultra-Micro Indentation. Device using the PZT actuator. Experimentally by using the Ultra-Micro Indentation device the micro fracture behavior of the silicon wafer was investigated. It was possible that ductile-brittle transition point in ultimate surface of brittle material can be detected by adding an acoustic emission sensor system to the Ultra-Micro Indentation appartus.

  • PDF

Design of Cymbal Displacement Amplification Device for Micro Punching System (마이크로 펀칭시스템 구현을 위한 심벌변위확대기구의 설계)

  • Choi, Jong-Pil;Lee, Kwang-Ho;Lee, Hye-Jin;Lee, Nak-Gue;Kim, Seong-Uk;Chu, Andy;Kim, Byeong-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • This paper presents the development of a micro punching system with modified cymbal mechanism. To realize the micro punching, we introduced the hybrid system with a macro moving part and micro punching part. The macro moving part consists of a ball screw, a linear guide and the micro step motor and micro punching part includes the PZT actuators and displacement amplification device with modified cymbal mechanism. The PZT actuator is capable of producing very large force, but they provide only limited displacements which are several micro meters. Thus the displacement amplification device is necessary to make those actuators more efficient and useful. For this purpose, a cymbal mechanism in series is proposed. The finite element method was used to design the cymbal mechanism and to analyze the mode shape of the one. The displacement and mode shape error between the FEM results and experiments are within 10%. A considerable design effort has been focused on optimizing the flexure hinge to increase the output displacement and punching force.

Design of an One-Chip Controller for an Electronic Dispenser (전자 디스펜서용 단일칩 제어기 설계)

  • Won, Young-Uk;Kim, Jeong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.137-140
    • /
    • 2005
  • The electronic dispenser is composed of electronic part and mechanical part. Electronic part is consisted of input keypad, micro-controller, display module, and pump module. In this paper we designed micro-controller for electronic part. The micro-controller controls display module and pump module. The display module is composed by LCD device, and the pump module is composed by motor device. The micro-controller for an electronic dispenser is designed by VHDL. We used WX12864APl for the LCD device and SPS20 for the stepping motor. Also, the micro-controller is designed by Altera Quartus tool and verified with Agent 2000 Design-kit using APEX20K Device. In this paper, we present possibility to adopt of biotechnology field through designing of one-chip controller for an electronic dispenser.

  • PDF