• Title/Summary/Keyword: micro bone fracture

Search Result 30, Processing Time 0.028 seconds

Analysis of Fracture Risk due to Alterations of Bone Quality by Metastatic Bone Tumor (전이성 골암으로 인한 골질 변화와 이로 인한 골절 위험성 분석)

  • Lim, Dohyung
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.213-222
    • /
    • 2012
  • While much has been learned about the mechanisms of metastatic spread of cancer to bone, there has been little headway in establishing guidelines for monitoring the alteration in bone quality and estimating fracture risk. The aims of this study are, therefore, 1) to evaluate bone quality induced by metastatic bone tumor by analyzing the characteristics on bone microarchitecture and degree of bone mineralization and 2) analyze fracture risk increased secondary to the bone quality changes by metastatic bone tumor through calculating mechanical rigidities based on in-vivo micro CT images. For this study, eighteen female SD rats (12 weeks old, approximate 250 g) were randomly allocated in Sham and Tumor groups. W256 (Walker carcinosarcoma 256 malignant breast cancer cell) was inoculated in the right femur (intraosseous injection) in Tumor group, while 0.9% NaCl (saline solution) was injected in Sham group. The right hind limbs of all rats were scanned by in-vivo micro-CT to acquire structural parameters and degree of bone mineralization at 0 week, 4 weeks, 8 weeks, and 12 weeks after surgery. At the same time, urine was collected by metabolic cages for a biochemical marker test in order to evaluate bone resorption. Then, bone metastasis had been directly identified by positron emission tomography. Finally, axial, bending and torsional rigidities had been calculated based on in-vivo micro CT images for predict fracture risk. The results of this study showed that metastatic bone tumor might induce significant decrease in bone quality and increase of fracture risk. This study may be helpful to monitoring a degree of bone metastasis and predicting fracture risk due to metastatic bone tumor. In addition, this noninvasive diagnostic methodology may be utilized for evaluating other bone metabolic diseases such as osteoporosis.

The Preclinical Study of Hyeolbuchugeo-tang (Xuefuzhuyu-tang) on Bone Healing in Rats with Rib Fracture (골절 유발 Rat에 대한 혈부축어탕(血府逐瘀湯)의 전임상 연구)

  • Huh, Gun;Oh, Min-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.30 no.3
    • /
    • pp.23-44
    • /
    • 2020
  • Objectives The purpose of this study is to evaluate the healing effect of Hyeolbuchugeo-tang (HC) in rats with rib fracture. Methods Rats were randomly divided into 5 groups (naive, control, positive control, HC-L and HC-H). All groups except naive group were subjected to bone fracture of rib. Naive group received no treatment at all. Control group was fed with phosphate buffered saline. Positive control group was orally medicated with tramadol. Experimental group was orally medicated with HC extract (50 mg/kg for low concentration [HC-L], 100 mg/kg for high concentration [HC-H]). X-ray and micro-computed tomography (micro-CT) were conducted to assess the effect of HC. We analysed the level of 2) transforming growth factor-β1 (TGF-β1), Ki67, alkaline phosphatase (ALP), receptor activator of nuclear factor kappa-β, runt-related transcription factor 2 (Runx2) and tartrate resistant acid phosphatase (TRAP) on 7 and 14 days after fracture. ALP, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, creatinine was measured for safety assessment. Results X-ray and micro-CT, showed HC enhance bone repair process. Callus formation was increased in experimental group at 7 days after fracture, but decreased at 14 days after fracture. 7 days after fracture, the level of TGF-β1 in experimental group was decreased. The level of Ki67, Runx2 in HC-H, TRAP in HC-L was increased. 14 days after fracture, the level of Ki67 in HC-L and HC-H was decreased. The level of ALP, Runx2, BUN in HC-L, TRAP in HC-L and HC-H was increased. Conclusions Taken together the results, HC promoted healing of bone fracture. In conclusion, HC has a potential to promote healing of bone fracture.

The Healing Effect of Jinmu-tang (Zhenwu-tang) in Femur Fractured Rats (진무탕(眞武湯)이 흰쥐의 대퇴골 골절 치유에 미치는 실험적 연구)

  • Park, Jung-Oh;Oh, Min-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.30 no.2
    • /
    • pp.19-35
    • /
    • 2020
  • Objectives The aim of this study is to evaluate the fracture healing effect of Jinmu-tang (JM) on femur fractured rats. Methods Rats were randomly divided into 5 groups (normal, control, positive control, JM extract with low concentration and JM extract with high concentration). All group except normal group went through both femur fracture. Normal and control group received no treatment at all. Positive control group were medicated with tramadol (20 mg/kg) once a day for 14 days. Experimental group was orally medicated with JM extract (10 mg/kg for low concentration, 50 mg/kg for high concentration) once a day for 14 days. In order to investigate fracture healing process, plasma and serum were obtained. Also, micro-computed tomography was conducted to see the frature site visually. Immunohistochemistry for transforming growth factor-β1, Ki67, alkaline phosphatase, runt-related transcription factor 2, receptor activator of nuclear factor kappa-β, tartrate resistant acid phosphatase was conducted to observe bone healing progress after 14 days since fracture occured. Aspartate aminotransferase, alanine aminotransferase, blood urea nitrogen and creatinine levels were measured in plasma, for hepatotoxicity and nephrotoxicity of JM extract. Osteocalcin was measured to observe activity of osteoblast. Results Through Micro-CT, more fracture healing was observed on both experimental group than control and positive control group. Through Hematoxylin & Eosin and safranin O staining showed bone cell proliferation and bone formation in the experimental group. RANK was significantly increased in the experimental groups. JM with high concentration showed statistically significant of TGF-β and Osteocalcin. NO, TRAP and ALP were not significantly changed. Liver toxicity was not significantly observed. Creatinine significantly increased in both experimental groups after 28 days. Conclusions As described above, JM extract showed anti-inflammatory effect, promoted fracture healing by stimulating the bone regeneration factor, and showed little hepatotoxicity and nephrotoxicity. In conclusion, JM extract can promote fracture healing and it can be used clinically to patients with fracture.

The Effect of Sintongchukea-tang (Shentongzhuyu-tang) on Bone Fusion in Rib Fractured Rats (신통축어탕(身痛逐瘀湯)이 늑골골절 유발 Rat의 골유합에 미치는 영향)

  • Nam, Dae-Jin;Oh, Min-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.30 no.3
    • /
    • pp.1-21
    • /
    • 2020
  • Objectives This study was designed to evaluate the bone regeneration effects of Sintongchukea-tang (SC) on rib fractured rats. Methods Rats were randomly divided into 5 groups (normal, control, positive control, SC low [SC-L] and SC high [SC-H]). All groups were subject to fractured rib except normal group. Normal group received no treatment at all. Control group was orally fed with phosphate buffered saline, and positive control group was medicated with tramadol (20 mg/kg). SC group was orally medicated with SC (50 mg/kg, 100 mg/kg) once a day for 14 days. The fracture healing process was observed by x-ray, micro CT and fracture tissue slide was observed by immunohistochemical staining. We analysed levels of transforming growth factor-β1, Ki67, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), receptor activator of nuclear factor kappa-β, tartrate resistant acid phosphatase (TRAP) and analysed levels of Osteocalcin in plasma. We measured levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), ALP, blood urea nitrogen (BUN) and creatinine in plasma, for hepatotoxicity and nephrotoxicity of SC. Results Though X-ray and micro-computed tomography, more callus formation was observed and bone union was progressing. Through Hematoxylin and Eosin, callus formation was increased compared to the control group. Runx2 level at SC-H was significantly increased and TRAP level at SC-L was significantly decreased compared with the control group. AST, ALT, ALP, BUN and creatinine were not statistically different from the control group. Conclusions As described above, SC promoted fracture healing by stimulating the bone regeneration factor. And SC shows no hepatotoxicity and nephrotoxicity. In conclusion, it seems that SC helps to promote fracture regeneration and it can be used clinically to patients with fracture.

Medical Application of the Nondestructive Ultrasonic Tests: Diagnosis of Micro Bone Fractures using Ultrasonic C Scan Images (비파괴 초음파 검사법의 의학적 활용: 초음파 C 스캔 영상을 이용한 미세 골절의 진단)

  • Choi, Min-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.377-385
    • /
    • 2002
  • Ultrasonic tests employing non-ionizing radiation are preferred in nondestructive examinations since they are safe and simple in use. The same principles of the techniques have been taken as valuable tools in medical area for the diagnoses of diseases, in other words, defects of the human body. The paper overviews the principles of the medical diagnosis based on nondestructive ultrasonic tests, and then evaluates experimentally the clinical potential of C scan images not popular in medicine, for detecting the micro fractures of the cortical bone. In the experiment the micro bone fractures were created on the femurs of porks by loading three point bending forces (2-4kN) with the speed of 1 mm/min. As the extent of the fracture was altered, not only X ray images but also ultrasonic C scan images using a focused ultrasonic probe resonated at 25 MHz were obtained. The results showed that ultrasonic C scan images were capable of detecting the micro bone fractures which were not possible to identify by conventional X ray images.

Feasibility of Early Definitive Internal Fixation of Pelvic Bone Fractures in Therapeutic Open Abdomen

  • Choi, Kyunghak;Jung, Kwang-Hwan;Keum, Min Ae;Kim, Sungjeep;Kim, Jihoon T;Kyoung, Kyu-Hyouck
    • Journal of Trauma and Injury
    • /
    • v.33 no.1
    • /
    • pp.18-22
    • /
    • 2020
  • Purpose: Damage control laparotomy has contributed to improved survival rates for severe abdominal injuries. A large part of severe abdominal injury occurs with a concomitant pelvic bone fracture. The safety and effectiveness of internal fixation of pelvic bone fracture(s) has not been established. The aim of the present study was to evaluate infection risk in the pelvic surgical site in patients who underwent emergent abdominal surgery. Methods: This single-center retrospective observational study was based on data collected from a prospectively maintained registry between January 2015 and June 2019. Patients who underwent laparotomy and pelvic internal fixation were included. Individuals <18 and ≥80 years of age, those with no microbiological investigations, and those who underwent one-stage abdominal surgery were excluded. Comprehensive statistical comparative analysis was not performed due to the small number of enrolled patients. Results: A total of six patients met the inclusion criteria, and the most common injury mechanism was anterior-posterior compression (67%). The average duration of open abdomen was 98 hours (range, 44-98), and the time interval between abdominal closure and pelvic surgery was 98 hours. One patient (16.7%) died due to multi-organ dysfunction syndrome. Micro-organisms were identified in the abdominal surgical site in five patients (83%), with no micro-organisms in pelvic surgical sites. There was no unplanned implant removal. Conclusions: Internal fixation of pelvic bone fracture(s) could be performed in the state of open abdomen, and the advantages of early fixation may countervail the risks for cross contamination.

In vivo Evaluation of Osteoporotic Fracture Prevention of the site to which low Intensity Ultrasound is Irradiated using Mechanical Strength Simulations (역학적 강도 분석을 이용한 저강도 초음파의 조사 부위의 골다공증 골절 방지 효과 평가)

  • Woo, Dae-Gon;Kim, Chi-Hoon;Park, Ji-Hyung;Ko, Chang-Young;Kim, Han-Sung;Kim, Jin-Man;Kim, Sang-Hee;Lim, Do-Hyung
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.2
    • /
    • pp.135-141
    • /
    • 2009
  • Purpose: The aim of present study is to evaluate a possibility of clinical application for the effect of low intensity ultrasound stimulation (LIUS) in mechanical characteristics of bone on osteoporotic fractures prevention. Materials and Methods: Eight virgin ICR mice (14 weeks old, approximate weight 25g) were ovariectomized (OVX) to induce osteoporosis. The right hind limbs were then stimulated with LIDS (US Group), whereas left hind limbs were not stimulated (CON Group). Both hind limbs of all mice were scanned by in-vivo micro-CT to acquire two-dimensional (2D) images at 0 week before stimulation and 3 weeks and 6 weeks after stimulation. Three-dimensional (3D) finite element (FE) models generated by scanned 2D images were used to determine quantitatively the effect of LIUS on strength related to bone structure. Additionally, distributions of Hounsfield units and elastic moduli, which are related to the bone quality, for the bones in the US and CON groups were determined to analyze quantitatively a degree of improvement of bone qualities achieved by LIUS. Results: The result of FE analysis showed that the structural strength in US Group was significantly increased over time (p<0.05), while that in CON Group was statistically constant over time (p>0.05). High values of Hounsfield units obtained from voxels on micro-CT images and high values of elastic moduli converted from the Hounsfield units were dominantly appeared in US Group compared with those in CON Group. Conclusion: These finding indicated that LIUS would improve the mechanical characteristics of osteoporotic bone via the effects of bone structure (bone strength) and quality (Hounsfield unit and elastic modulus). Therefore, the LIUS may decrease effectively the risk of osteoporotic fracture in clinics.

A Microstructural Analysis for Preventive Treatments of Vertebral Fracture (척추 골절의 예방적 치료법에 관한 미세 구조해석)

  • 김형도;탁계래;김한성;이성재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.146-149
    • /
    • 2002
  • It is reported that the mechanical properties of vertebral trabecular bone depend on the density and the mass of bones. Osteoporosis is a systemic skeletal disease caused by low bone mass and microstructure deterioration of trabecular bone. Silva and Gibson (1997) studied the treatment of age-related bone loss using drug therapy. Vertebroplasty is a minimally invasive surgery for the treatment of osteoporosis vertebrae. This procedure includes puncturing vertebrae and filling with Polymethylmethacrylate (PMMA). However, the relative effect of drug therapy and bone cement for osteoporosis treatment is not reported yet. In this study, several 2D models of human vertebral trabecular bone are analyzed by finite element method. The mechanical behaviors of the vertebral trabecular bone treated by the drug therapy and the bone cement are compared. This study shows that bone cement treatment is more effective strategy than drug therapy to prevent the degradation of bone strength.

  • PDF

Numerical analysis of fracture mechanisms for porous calcium phosphate (다공성 칼슘포스파이트에 대한 파괴분석)

  • Park, Jin-Hong;Bae, Ji-Yong;Shin, Jae-Bum;Jeon, In-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1301-1302
    • /
    • 2008
  • In this study, the fracture strength for fracture mechanism porous calcium phosphate made from sintered with ${\beta}$-tricalcium phosphate obtained by wet precipitation procedure is analyzed using finite element method and experiment measurement. First, three $3{\times}3{\times}3mm^3$ and $5{\times}5{\times}5mm^3$ specimens are prepared and tomographic images of one $5{\times}5{\times}5mm^3$ specimen are obtained by micro focus X-ray CT. The compression tests using the specimens are carried out to measure the elastic modulus and fracture strength to analyze the fracture mechanism of porous calcium phosphate specimen. The tomographic images are reconstructed by 3D reconstruction program. The finite elements are directly built up in the reconstructed specimen. The numerical simulation for the compression tests is performed using the element. The mechanism of calcium phosphate of simulation are obtained by the compression tests using there cylindric specimen of height 19.5 mm and diameter 10 mm. From the results, the applicability of porous calcium phosphate is evaluated to care fracture and vacant bone of a patient as the reinforcement material.

  • PDF