• Title/Summary/Keyword: miRNA

Search Result 1,589, Processing Time 0.03 seconds

MicroRNA-directed cleavage of targets: mechanism and experimental approaches

  • Park, June Hyun;Shin, Chanseok
    • BMB Reports
    • /
    • v.47 no.8
    • /
    • pp.417-423
    • /
    • 2014
  • MicroRNAs (miRNAs) are a large family of post-transcriptional regulators, which are 21-24 nt in length and play a role in a wide variety of biological processes in eukaryotes. The past few years have seen rapid progress in our understanding of miRNA biogenesis and the mechanism of action, which commonly entails a combination of target degradation and translational repression. The target degradation mediated by Argonaute-catalyzed endonucleolytic cleavage exerts a significant repressive effect on target mRNA expression, particularly during rapid developmental transitions. This review outlines the current understanding of the mechanistic aspects of this important process and discusses several different experimental approaches to identify miRNA cleavage targets.

MicroRNA expression profiling during the suckling-to-weaning transition in pigs

  • Jang, Hyun Jun;Lee, Sang In
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.854-863
    • /
    • 2021
  • Weaning induces physiological changes in intestinal development that affect pigs' growth performance and susceptibility to disease. As a posttranscriptional regulator, microRNAs (miRNAs) regulate cellular homeostasis during intestinal development. We performed small RNA expression profiling in the small intestine of piglets before weaning (BW), 1 week after weaning (1W), and 2 weeks after weaning (2W) to identify weaning-associated differentially expressed miRNAs. We identified 38 differentially expressed miRNAs with varying expression levels among BW, 1W, and 2W. Then, we classified expression patterns of the identified miRNAs into four types. ssc-miR-196a and ssc-miR-451 represent pattern 1, which had an increased expression at 1W and a decreased expression at 2W. ssc-miR-499-5p represents pattern 2, which had an increased expression at 1W and a stable expression at 2W. ssc-miR-7135-3p and ssc-miR-144 represent pattern 3, which had a stable expression at 1W and a decreased expression at 2W. Eleven miRNAs (ssc-miR-542-3p, ssc-miR-214, ssc-miR-758, ssc-miR-4331, ssc-miR-105-1, ssc-miR-1285, ssc-miR-10a-5p, ssc-miR-4332, ssc-miR-503, ssc-miR-6782-3p, and ssc-miR-424-5p) represent pattern 4, which had a decreased expression at 1W and a stable expression at 2W. Moreover, we identified 133 candidate targets for miR-196a using a target prediction database. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the target genes were associated with 19 biological processes, 4 cellular components, 8 molecular functions, and 7 KEGG pathways, including anterior/posterior pattern specification as well as the cancer, PI3K-Akt, MAPK, GnRH, and neurotrophin signaling pathways. These findings suggest that miRNAs regulate the development of the small intestine during the weaning process in piglets by anterior/posterior pattern specification as well as the cancer, PI3K-Akt, MAPK, GnRH, and neurotrophin signaling pathways.

Identification of plasma miRNA biomarkers for pregnancy detection in dairy cattle

  • Lim, Hyun-Joo;Kim, Hyun Jong;Lee, Ji Hwan;Lim, Dong Hyun;Son, Jun Kyu;Kim, Eun-Tae;Jang, Gulwon;Kim, Dong-Hyeon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.35-44
    • /
    • 2021
  • A pregnancy diagnosis is an important standard for control of livestock's reproduction in paricular dairy cattle. High reproductive performance in dairy animals is a essential condition to realize of high life-time production. Pregnancy diagnosis is crucial to shortening the calving interval by enabling the farmer to identify open animals so as to treat or re-breed them at the earliest opportunity. MicroRNAs are short RNA molecules which are critically involved in regulating gene expression during both health and disease. This study is sought to establish the feasible of circulating miRNAs as biomarkers of early pregnancy in cattle. We applied Illumina small-RNA sequencing to profile miRNAs in plasma samples collected from 12 non-pregnant cows ("open" cows: samples were collected before insemination (non-pregnant state) and after pregnancy check at the indicated time points) on weeks 0, 4, 8, 12 and 16. Using small RNA sequencing we identified a total of 115 miRNAs that were differentially expressed weeks 16 relative to non-pregnancy ("open" cows). Weeks 8, 12 and 16 of pregnancy commonly showed a distinct increase in circulating levels of miR-221 and miR-320a. Through genome-wide analyses we have successfully profiled plasma miRNA populations associated with pregnancy in cattle. Their application in the field of reproductive biology has opened up opportunities for research communities to look for pregnancy biomarker molecules in dairy cattle.

Implication of microRNA as a potential biomarker of myocarditis

  • Oh, Jin-Hee;Kim, Gi Beom;Seok, Heeyoung
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.5
    • /
    • pp.230-238
    • /
    • 2022
  • Myocarditis was previously attributed to an epidemic viral infection. Additional harmful reagents, in addition to viruses, play a role in its etiology. Coronavirus disease 2019 (COVID-19) vaccine-induced myocarditis has recently been described, drawing attention to vaccine-induced myocarditis in children and adolescents. Its pathology is based on a series of complex immune responses, including initial innate immune responses in response to viral entry, adaptive immune responses leading to the development of antigen-specific antibodies, and autoimmune responses to cellular injury caused by cardiomyocyte rupture that releases antigens. Chronic inflammation and fibrosis in the myocardium eventually result in cardiac failure. Recent advancements in molecular biology have remarkably increased our understanding of myocarditis. In particular, microRNAs (miRNAs) are a hot topic in terms of the role of new biomarkers and the pathophysiology of myocarditis. Myocarditis has been linked with microRNA-221/222 (miR-221/222), miR-155, miR-10a*, and miR-590. Despite the lack of clinical trials of miRNA intervention in myocarditis yet, multiple clinical trials of miRNAs in other cardiac diseases have been aggressively conducted to help pave the way for future research, which is bolstered by the success of recently U.S. Food and Drug Administration-approved small-RNA medications. This review presents basic information and recent research that focuses on myocarditis and related miRNAs as a potential novel biomarker and the therapeutics.

LncRNA CRNDE Promotes the Progression of B-cell Precursor Acute Lymphoblastic Leukemia by Targeting the miR-345-5p/CREB Axis

  • Wang, Weimin;Wu, Feifei;Ma, Ping;Gan, Silin;Li, Xue;Chen, Li;Sun, Ling;Sun, Hui;Jiang, Zhongxing;Guo, Feng
    • Molecules and Cells
    • /
    • v.43 no.8
    • /
    • pp.718-727
    • /
    • 2020
  • The imbalance between the proliferation and apoptosis of B-cell precursors is an important contributor to the pathogenesis of B-cell precursor acute lymphoblastic leukemia (BCP-ALL), while its specific regulatory mechanism remains perplexing. This study aimed to expound the underlying mechanism of the proliferation and apoptosis of BCP-ALL cells from the perspective of non-coding RNA. In this study, long non-coding RNA colorectal neoplasia differentially expressed (LncRNA CRNDE) was upregulated in the bone marrow of BCP-ALL patients and BCP-ALL cell lines (NALM-6 and RS4;11). Functionally, LncRNA CRNDE knockdown restrained cell proliferation and boosted cell apoptosis in NALM-6 and RS4;11 cells. The subsequent investigation confirmed that LncRNA CRNDE bound to miR-345-5p and negatively regulated miR-345-5p expression. The overexpression of miR-345-5p suppressed cell proliferation and boosted cell apoptosis in NALM-6 and RS4;11 cells. Further experiments revealed that miR-345-5p downregulated cyclic AMP response element-binding protein (CREB) expression by targeting its mRNA directly. CREB overexpression reversed the effect of miR-345-5p mimic on cell proliferation and apoptosis in NALM-6 and RS4;11 cells. Finally, in vivo experiments showed that LncRNA CRNDE knockdown prolonged the survival of mice xenotransplanted with NALM-6 cells. In conclusion, LncRNA CRNDE upregulated CREB expression by suppressing miR-345-5p, thus promoting cell proliferation and reducing cell apoptosis in BCP-ALL.

miR-3074-3p promotes myoblast differentiation by targeting Cav1

  • Lee, Bora;Shin, Yeo Jin;Lee, Seung-Min;Son, Young Hoon;Yang, Yong Ryoul;Lee, Kwang-Pyo
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.278-283
    • /
    • 2020
  • Muscle fibers are generally formed as multinucleated fibers that are differentiated from myoblasts. Several reports have identified transcription factors and proteins involved in the process of muscle differentiation, but the roles of microRNAs (miRNAs) in myogenesis remain unclear. Here, comparative analysis of the miRNA expression profiles in mouse myoblasts and gastrocnemius (GA) muscle uncovered miR-3074-3p as a novel miRNA showing markedly reduced expression in fully differentiated adult skeletal muscle. Interestingly, elevating miR-3074-3p promoted myogenesis in C2C12 cells, primary myoblasts, and HSMMs, resulting in increased mRNA expression of myogenic makers such as Myog and MyHC. Using a target prediction program, we identified Caveolin-1 (Cav1) as a target mRNA of miR-3074-3p and verified that miR-3074-3p directly interacts with the 3' untranslated region (UTR) of Cav1 mRNA. Consistent with the findings in miR-3074-3p-overexpressing myoblasts, knockdown of Cav1 promoted myogenesis in C2C12 cells and HSMMs. Taken together, our results suggest that miR-3074-3p acts a positive regulator of myogenic differentiation by targeting Cav1.

Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer)

  • Mathiyalagan, Ramya;Subramaniyam, Sathiyamoorthy;Natarajan, Sathishkumar;Kim, Yeon Ju;Sun, Myung Suk;Kim, Se Young;Kim, Yu-Jin;Yang, Deok Chun
    • Journal of Ginseng Research
    • /
    • v.37 no.2
    • /
    • pp.227-247
    • /
    • 2013
  • MicroRNAs (miRNAs) are a class of recently discovered non-coding small RNA molecules, on average approximately 21 nucleotides in length, which underlie numerous important biological roles in gene regulation in various organisms. The miRNA database (release 18) has 18,226 miRNAs, which have been deposited from different species. Although miRNAs have been identified and validated in many plant species, no studies have been reported on discovering miRNAs in Panax ginseng Meyer, which is a traditionally known medicinal plant in oriental medicine, also known as Korean ginseng. It has triterpene ginseng saponins called ginsenosides, which are responsible for its various pharmacological activities. Predicting conserved miRNAs by homology-based analysis with available expressed sequence tag (EST) sequences can be powerful, if the species lacks whole genome sequence information. In this study by using the EST based computational approach, 69 conserved miRNAs belonging to 44 miRNA families were identified in Korean ginseng. The digital gene expression patterns of predicted conserved miRNAs were analyzed by deep sequencing using small RNA sequences of flower buds, leaves, and lateral roots. We have found that many of the identified miRNAs showed tissue specific expressions. Using the insilico method, 346 potential targets were identified for the predicted 69 conserved miRNAs by searching the ginseng EST database, and the predicted targets were mainly involved in secondary metabolic processes, responses to biotic and abiotic stress, and transcription regulator activities, as well as a variety of other metabolic processes.

Distribution and differential expression of microRNAs in the intestinal mucosal layer of necrotic enteritis induced Fayoumi chickens

  • Rengaraj, Deivendran;Truong, Anh Duc;Ban, Jihye;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.1037-1047
    • /
    • 2017
  • Objective: Despite an increasing number of investigations into the pathophysiology of necrotic enteritis (NE) disease, etiology of NE-associated diseases, and gene expression profiling of NE-affected tissues, the microRNA (miRNA) profiles of NE-affected poultry have been poorly studied. The aim of this study was to induce NE disease in the genetically disparate Fayoumi chicken lines, and to perform non-coding RNA sequencing in the intestinal mucosal layer. Methods: NE disease was induced in the Fayoumi chicken lines (M5.1 and M15.2), and non-coding RNA sequencing was performed in the intestinal mucosal layer of both NE-affected and uninfected chickens to examine the differential expression of miRNAs. Next, quantitative real-time polymerase chain reaction (real-time qPCR) was performed to further examine four miRNAs that showed the highest fold differences. Finally, bioinformatics analyses were performed to examine the four miRNAs target genes involvement in the signaling pathways, and to examine their interaction. Results: According to non-coding RNA sequencing, total 50 upregulated miRNAs and 26 downregulated miRNAs were detected in the NE-induced M5.1 chickens. While 32 upregulated miRNAs and 11 downregulated miRNAs were detected in the NE-induced M15.2 chickens. Results of real-time qPCR analysis on the four miRNAs (gga-miR-9-5p, gga-miR-20b-5p, ggamiR-196-5p, and gga-let-7d) were mostly correlated with the results of RNAseq. Overall, ggamiR-20b-5p was significantly downregulated in the NE-induced M5.1 chickens and this was associated with the upregulation of its top-ranking target gene, mitogen-activated protein kinase, kinase 2. Further bioinformatics analyses revealed that 45 of the gene targets of gga-miR-20b-5p were involved in signal transduction and immune system-related pathways, and 35 of these targets were predicted to interact with each other. Conclusion: Our study is a novel report of miRNA expression in Fayoumi chickens, and could be very useful in understanding the role of differentially expressed miRNAs in a NE disease model.

N6-Methyladenosine modification (m6A) of circRNA-ZNF638 contributes to the induced activation of SHF stem cells through miR-361-5p/Wnt5a axis in cashmere goats

  • Ronghuan Yin;Ronglan Yin;Man Bai;Yixing Fan;Zeying Wang;Yubo Zhu;Qi Zhang;Taiyu Hui;Jincheng Shen;Siyu Feng;Wenlin Bai
    • Animal Bioscience
    • /
    • v.36 no.4
    • /
    • pp.555-569
    • /
    • 2023
  • Objective: The objective of this study was to investigate the effects of N6-Methyladenosine modification-circRNA-zinc finger protein 638 (m6A-circRNA-ZNF638) on the induced activation of secondary hair follicle (SHF) stem cells with its potential mechanisms in cashmere goats. Methods: The m6A modification of ZNF638 was analyzed using methylation immunoprecipitation with real-time quantitative polymerase chain reaction technique in SHF stem cells. The effects of circRNA-ZNF638 on the induced activation of SHF stem cells in m6A dependence were evaluated through the overexpression of circRNA-ZNF638/its m6A-deficient mutants in circRNA-ZNF638 knockdown SHF stem cells. The competitive binding of miR-361-5p to circRNA-ZNF638/Wnt5a 3'- untranslated region was analyzed through Dual-luciferase reporter assay. Results: The m6A-circRNA-ZNF638 had significantly higher transcription at anagen SHF bulge of cashmere goats compared with that at telogen, as well as it positively regulated the induced activation of SHF-stem cells in cashmere goats. Mechanismly, m6A-circRNA-ZNF638 sponged miR-361-5p to heighten the transcriptional expression of Wnt5a gene in SHF-stem cells. We further demonstrated that the internal m6A modification within circRNA-ZNF638 is required for mediating the miR-361-5p/Wnt5a pathway to regulate the induced activation of SHF stem cells through an introducing of m6A-deficient mutant of circRNA-ZNF638. Conclusion: The circRNA-ZNF638 contributes the proper induced activation of SHF-stem cells in cashmere goats in m6A-dependent manner through miR-361-5p/Wnt5a axis.

miRNA-1297 Induces Cell Proliferation by Targeting Phosphatase and Tensin Homolog in Testicular Germ Cell Tumor Cells

  • Yang, Nian-Qin;Zhang, Jian;Tang, Qun-Ye;Guo, Jian-Ming;Wang, Guo-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6243-6246
    • /
    • 2014
  • To investigate the role of miR-1297 and the tumor suppressor gene PTEN in cell proliferation of testicular germ cell tumors (TGCT). MTT assays were used to test the effect of miR-1297 on proliferation of the NCCIT testicular germ cell tumor cell line. In NCCIT cells, the expression of PTEN was assessed by Western blotting further. In order to confirm target association between miR-1297 and 3'-UTR of PTEN, a luciferase reporter activity assay was employed. Moreover, roles of PTEN in proliferation of NCCIT cells were evaluated by transfection of PTEN siRNA. Proliferation of NCCIT cells was promoted by miR-1297 in a concentration-dependent manner. In addition, miR-1297 could bind to the 3'-UTR of PTEN based on luciferase reporter activity assay, and reduced expression of PTEN at protein level was found. Proliferation of NCCIT cells was significantly enhanced after knockdown of PTEN by siRNA. miR-1297 as a potential oncogene could induce cell proliferation by targeting PTEN in NCCIT cells.