• Title/Summary/Keyword: miR-27a

Search Result 287, Processing Time 0.032 seconds

Profiles of microRNAs in Mice Follicles According to Gonadotropins during in vitro Culture (생쥐 난포의 체외배양 중 생식샘자극호르몬에 따른 미세리보핵산 발현 양상)

  • Kim, Yong-Jin;Ku, Seung-Yup;Kim, Yoon-Young;Oh, Sun-Kyung;Kim, Seok-Hyun;Choi, Young-Min;Moon, Shin-Yong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.4
    • /
    • pp.265-274
    • /
    • 2009
  • Objective: MicroRNAs (miR) are known to repress target genes at post-transcriptional level and play important roles in development and maturation of cell. However, the expression profiles of miR during ovarian follicle maturation have not been fully elucidated. Here, we designed this study to investigate the expression profiles of miR in oocytes and granulose cells (G-cells) after in vitro culture according to gonadotropins and adding hCG. Methods: Ovaries from 12-day-old mice (C57BL6) were removed and preantral follicles were isolated and cultured in $20\;{\mu}L$-drop of culture media with supplementation of either rFSH, rLH, or rFSH+rLH. After their full maturation, follicles were incubated with rhCG and rEGF. RNA was isolated from oocytes and G-cells, and real-time PCR were performed with primers of miR known to be expressed in the mouse ovary (mmu-miR-16, -miR-27a, -miR-126, -miR-721). Results: FSH+LH group showed the highest ovulation and MII rates among gonadotropin groups. The profiles of miRs in oocytes and G-cells differed according to gonadotropin groups and adding hCG. The profiles of miRs showed divergent changes between oocytes and G-cells. Conclusion: miR expression profiles are altered by gonadotropins and supplementation of hCG during in vitro maturation of murine follicles. Target gene study must be necessary to validate these findings.

Characterization of the MicroRNA Expression Profile of Cervical Squamous Cell Carcinoma Metastases

  • Ding, Hui;Wu, Yi-Lin;Wang, Ying-Xia;Zhu, Fu-Fan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1675-1679
    • /
    • 2014
  • Objectives: MicroRNAs (miRNAs) are important regulators of many physiological and pathological processes, including tumorigenesis and metastasis. In this study, we sought to determine the underlying molecular mechanisms of metastatic cervical carcinoma by performing miRNA profiling. Methods: Tissue samples were collected from ten cervical squamous cancer patients who underwent hysterectomy and pelvic lymph node (PLN) dissection in our hospital, including four PLN-positive (metastatic) cases and six PLN-negative (non-metastatic) cases. A miRNA microarray platform with 1223 probes was used to determine the miRNA expression profiles of these two tissue types and case groups. MiRNAs having at least 4-fold differential expression between PLN-positive and PLN-negative cervical cancer tissues were bioinformatically analyzed for target gene prediction. MiRNAs with tumor-associated target genes were validated by quantitative reverse transcription-polymerase chain reaction (RT-PCR). Results: Thirty-nine miRNAs were differentially expressed (>4-fold) between the PLN-positive and PLN-negative groups, of which, 22 were up-regulated and 17 were down-regulated. Sixty-nine percent of the miRNAs (27/39) had tumor-associated target genes, and the expression levels of six of those (miR-126, miR-96, miR-144, miR-657, miR-490-5p, and miR-323-3p) were confirmed by quantitative (q)RT-PCR. Conclusions: Six MiRNAs with predicted tumor-associated target genes encoding proteins that are known to be involved in cell adhesion, cytoskeletal remodeling, cell proliferation, cell migration, and apoptosis were identified. These findings suggest that a panel of miRNAs may regulate multiple and various steps of the metastasis cascade by targeting metastasis-associated genes. Since these six miRNAs are predicted to target tumor-associated genes, it is likely that they contribute to the metastatic potential of cervical cancer and may aid in prognosis or molecular therapy.

Analysis of miRNA expression in the trachea of Ri chicken infected with the highly pathogenic avian influenza H5N1 virus

  • Suyeon Kang;Thi Hao Vu;Jubi Heo;Chaeeun Kim;Hyun S. Lillehoj;Yeong Ho Hong
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.73.1-73.16
    • /
    • 2023
  • Background: Highly pathogenic avian influenza virus (HPAIV) is considered a global threat to both human health and the poultry industry. MicroRNAs (miRNA) can modulate the immune system by affecting gene expression patterns in HPAIV-infected chickens. Objectives: To gain further insights into the role of miRNAs in immune responses against H5N1 infection, as well as the development of strategies for breeding disease-resistant chickens, we characterized miRNA expression patterns in tracheal tissues from H5N1-infected Ri chickens. Methods: miRNAs expression was analyzed from two H5N1-infected Ri chicken lines using small RNA sequencing. The target genes of differentially expressed (DE) miRNAs were predicted using miRDB. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were then conducted. Furthermore, using quantitative real-time polymerase chain reaction, we validated the expression levels of DE miRNAs (miR-22-3p, miR-146b-3p, miR27b-3p, miR-128-3p, miR-2188-5p, miR-451, miR-205a, miR-203a, miR-21-3p, and miR-200a3p) from all comparisons and their immune-related target genes. Results: A total of 53 miRNAs were significantly expressed in the infection samples of the resistant compared to the susceptible line. Network analyses between the DE miRNAs and target genes revealed that DE miRNAs may regulate the expression of target genes involved in the transforming growth factor-beta, mitogen-activated protein kinase, and Toll-like receptor signaling pathways, all of which are related to influenza A virus progression. Conclusions: Collectively, our results provided novel insights into the miRNA expression patterns of tracheal tissues from H5N1-infected Ri chickens. More importantly, our findings offer insights into the relationship between miRNA and immune-related target genes and the role of miRNA in HPAIV infections in chickens.

Role of microRNAs in myogenesis and their effects on meat quality in pig - A review

  • Iqbal, Ambreen;Jiang, Ping;Ali, Shaokat;Gao, Zhen;Liu, Juan;Jin, Zi Kang;Pan, Ziyi;Lu, Huixian;Zhao, Zhihui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1873-1884
    • /
    • 2020
  • The demand for food is increasing day by day because of the increasing global population. Therefore, meat, the easiest and largely available source of protein, needs to be produced in large amounts with good quality. The pork industry is a significant shareholder in fulfilling the global meat demands. Notably, myogenesis- development of muscles during embryogenesis- is a complex mechanism which culminates in meat production. But the molecular mechanisms which govern the myogenesis are less known. The involvement of miRNAs in myogenesis and meat quality, which depends on factors such as myofiber composition and intramuscular fat contents which determine the meat color, flavor, juiciness, and water holding capacity, are being extrapolated to increase both the quantity and quality of pork. Various kinds of microRNAs (miRNAs), miR-1, miR-21, miR22, miR-27, miR-34, miR-127, miR-133, miR-143, miR-155, miR-199, miR-206, miR-208, miR-378, and miR-432 play important roles in pig skeletal muscle development. Further, the quality of meat also depends upon myofiber which is developed through the expression of different kinds of miRNAs at different stages. This review will focus on the mechanism of myogenesis, the role of miRNAs in myogenesis, and meat quality with a focus on the pig.

Association of a Pre-miR-27a Polymorphism with Cancer Risk: an Updated Meta-analysis

  • Bai, Rong-Pan;Weng, Yu;Su, Li-Ling;Jin, Ming-Juan;Xu, Zheng-Ping;Lu, Li-Qin;Chen, Guang-Di
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10107-10114
    • /
    • 2015
  • MicroRNA-27a is highly expressed in cancers and has been identified as an oncogenic microRNA. A genetic variant in pre-miR-27a (rs895819) with a transition of A to G has been demonstrated to be associated with cancer risk; however, the results of these studies remain conflicting rather than conclusive. Therefore, we performed a meta-analysis to derive a more precise estimation. Through searching PubMed or other databases up to March 2014 using the following MeSH terms and keywords, "miR-27a", "polymorphism" and "cancer", seventeen case-control studies were identified in this meta-analysis, including 7,813 cases and 9,602. Crude odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated to investigate the association strength between rs895819 and the susceptibility of cancer. The results of the overall meta-analysis did not suggest any association between rs895819 polymorphism and cancer susceptibility, and this remained in Asians as a subgroup. In Caucasians, however, the rs895819 was associated with a reduced cancer risk in heterozygous (OR, 0.83; 95%CI, 0.75-0.93) and dominant models (OR, 0.84; 95%CI, 0.76-0.93), and the [G] allele of rs895819 showed a protective effect (OR, 0.90, 95%CI, 0.84-0.97). Further studies showed a significant association between the [G] allele of rs895819 and decreased risk of breast cancer (0.91; 95%CI, 0.85-0.98), and stratified analyses indicated a protective effect of the [G] allele in Caucasians (OR, 0.89; 95%CI, 0.82-0.98), younger breast cancer cases (OR, 0.87; 95%CI, 0.79-0.96), and in the group of unilateral breast cancer patients (OR, 0.90; 95%CI, 0.83-0.97). These findings suggest an association between pre-miR-27a polymorphism rs895819 and cancer risk in Caucasians. The protective effect of rs895819 [G] allele in younger breast cancer and in the group of unilateral breast cancer patients await further confirmation since the included studies in this meta-analysis were limited.

MicroRNA-23b is a Potential Tumor Suppressor in Diffuse Large B-cell Lymphoma (미만성 거대 B 세포 림프종(DLBCL)에서 microRNA-23b의 잠재적 종양 억제자로서의 효과)

  • Nam, Jehyun;Kim, Eunkyung;Kim, Jinyoung;Jeong, Dawoom;Kim, Donguk;Kwak, Bomi;Kim, Sang-Woo
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.149-154
    • /
    • 2017
  • Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-hodgkin lymphoma. Advances in the chemotherapeutic treatment of this disease have improved the outcomes of DLBCL; nonetheless, many patients still die of DLBCL, and therefore, a better understanding of this disease and identification of novel therapeutic targets are urgently required. In a recent gene expression profiling study, PDE (phosphodiesterase) 4B was found to be overexpressed in chemotherapy-resistant tumors. The major function of PDE4B is to inactivate the second messenger cyclic 3',5' monophosphate (cAMP) by catalyzing the hydrolysis of cAMP to 5'AMP. It is known that cAMP induces cell cycle arrest and/or apoptosis in B cells, and PDE4B abolishes cAMP's effect on B cells. However, the mechanism by which PDE4B is overexpressed remains unclear. Here, we show that the aberrant expression of miRNA may be associated with the overexpression of this gene. The PDE4B 3' untranslated region (UTR) has three functional binding sites of miR-23b, as confirmed by luciferase reporter assays. Interestingly, miR-23b-binding sites were evolutionarily conserved from humans to lizards, implying the critical role of PDE4B-miR-23b interaction in cellular physiology. The ectopic expression of miR-2 3b repressed PDE4B mRNA levels and enhanced intracellular cAMP concentrations. Additionally, miR-23b expression inhibited cell proliferation and survival of DLBCL cells only in the presence of forskolin, an activator of adenylyl cyclase, suggesting that miR-23b's effect is via the downregulation of PDE4B. These results together suggest that miR-23b could be a therapeutic target for overcoming drug resistance by repressing PDE4B in DLBCL.

Quantitative Analysis of Milk-Derived microRNAs and Microbiota during the Manufacturing and Ripening of Soft Cheese

  • Oh, Sangnam;Park, Mi-Ri;Ryu, Sangdon;Maburutse, Brighton E.;Kim, Ji-Uk;Kim, Younghoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1566-1575
    • /
    • 2017
  • MicroRNAs (miRNAs) are abundant in bovine milk and milk derived from other livestock, and they have functional roles in infants and in the secretion process of mammary glands. However, few studies have evaluated miRNAs in dairy processes, such as during cheese making and ripening. Thus, we investigated the characteristics of milk-derived miRNAs during the manufacturing and ripening of Camembert cheese as well as the microbiota present using the quantitative reverse transcription polymer chain reaction (RT-qPCR) and 16S rRNA pyrosequencing, respectively. Pyrosequencing showed that the cheese microbiota changed dramatically during cheese processing, including during the pasteurization, starter culture, and ripening stages. Our results indicated that the RNA contents per $200mg/200{\mu}l$ of the sample increased significantly during cheese-making and ripening. The inner cheese fractions had higher RNA contents than the surfaces after 12 and 22 days of ripening in a time-dependent manner (21.9 and 13.2 times higher in the inner and surface fractions than raw milk, respectively). We performed a comparative analysis of the miRNAs in each fraction by RT-qPCR. Large amounts of miRNAs (miR-93, miR-106a, miR-130, miR-155, miR-181a, and miR-223) correlated with immune responses and mammary glands were present in aged cheese, with the exception of miR-223, which was not present on the surface. Considerable amounts of miRNAs were also detected in whey, which is usually disposed of during the cheese-making process. Unexpectedly, there were no significant correlations between immune-related miRNAs and the microbial populations during cheese processing. Taken together, these results show that various functional miRNAs are present in cheese during its manufacture and that they are dramatically increased in amount in ripened Camembert cheese, with differences according to depth.

Preparation of an Amino Acid Based DTPA as a BFCA for Radioimmunotherapy

  • Choi, Kang-hyuk;Hong, Young-Don;Pyun, Mi-Sun;Choi, Sun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1194-1198
    • /
    • 2006
  • For the purpose of developing more effective chelating agents, we have synthesized a diethylene triamine pentaacetic acid(DTPA) analogue by using an amino acid. S-(N-Boc-aminophenyl)-Cys(t-Bu4-DTPA) methylester was prepared in 6 steps with total yield of 47.9%. For the sake of introducing a biomolecule to the DTPA derivative, a selective hydrolysis was performed with 3 M HCl/Ethylacetate = 1 : 3 ($25{^{\circ}C}$, 30 min, vigorous stirring). $^{166}Ho$-Cys-DTPA and $^{166}Ho$-Biotin-Cys-DTPA were prepared by mixing $^{166}Ho$ with DTPA derivatives at room temp in a HCl solution (pH = 5) and the radiochemical stabilities (> 99%) were maintained for over 6 hrs in vitro.

Exosomal miR-181b-5p Downregulation in Ascites Serves as a Potential Diagnostic Biomarker for Gastric Cancer-associated Malignant Ascites

  • Yun, Jieun;Han, Sang-Bae;Kim, Hong Jun;Go, Se-il;Lee, Won Sup;Bae, Woo Kyun;Cho, Sang-Hee;Song, Eun-Kee;Lee, Ok-Jun;Kim, Hee Kyung;Yang, Yaewon;Kwon, Jihyun;Chae, Hee Bok;Lee, Ki Hyeong;Han, Hye Sook
    • Journal of Gastric Cancer
    • /
    • v.19 no.3
    • /
    • pp.301-314
    • /
    • 2019
  • Purpose: Peritoneal carcinomatosis in gastric cancer (GC) patients results in extremely poor prognosis. Malignant ascites samples are the most appropriate biological material to use to evaluate biomarkers for peritoneal carcinomatosis. This study identified exosomal MicroRNAs (miRNAs) differently expressed between benign liver cirrhosis-associated ascites (LC-ascites) and malignant gastric cancer-associated ascites (GC-ascites), and validated their role as diagnostic biomarkers for GC-ascites. Materials and Methods: Total RNA was extracted from exosomes isolated from 165 ascites samples (73 LC-ascites and 92 GC-ascites). Initially, microarrays were used to screen the expression levels of 2,006 miRNAs in the discovery cohort (n=22). Subsequently, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analyses were performed to validate the expression levels of selected exosomal miRNAs in the training (n=70) and validation (n=73) cohorts. Furthermore, carcinoembryonic antigen (CEA) levels were determined in ascites samples. Results: The miR-574-3p, miR-181b-5p, miR-4481, and miR-181d were significantly downregulated in the GC-ascites samples compared to the LC-ascites samples, and miR-181b-5p showed the best diagnostic performance for GC-ascites (area under the curve [AUC]=0.798 and 0.846 for the training and validation cohorts, respectively). The diagnostic performance of CEA for GC-ascites was improved by the combined analysis of miR-181b-5p and CEA (AUC=0.981 and 0.946 for the training and validation cohorts, respectively). Conclusions: We identified exosomal miRNAs capable of distinguishing between non-malignant and GC-ascites, showing that the combined use of miR-181b-5p and CEA could improve diagnosis.

MicroRNA-124 rs531564 Polymorphism and Cancer Risk: A Meta-analysis

  • Li, Wen-Jing;Wang, Yong;Gong, Yu;Tu, Chao;Feng, Tong-Bao;Qi, Chun-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7905-7909
    • /
    • 2015
  • Several studies reported there was a polymorphism (rs531564 C > G) in miR-124 gene. To investigate the MiR-124 rs531564 polymorphism and cancer risk. We conducted a literature search of the Medline, Embase and Wangfang Medicine databases to identify all relevant studies for this meta-analysis. We determined that the miR-124 rs531564 polymorphism was significantly associated with decreased risks of cancers in the allelic model (G vs C, OR=0.71, 95% CI=0.53-0.94, P=0.02), homozygote model (GG vs CC, OR=0.42, 95% CI=0.26-0.66, P=0.0002), dominant model (GG/GC vs CC, OR=0.71, 95% CI=0.51-0.98, P=0.04) and recessive model (GG vs GC/CC, OR=0.43, 95% CI=0.27-0.69, P=0.0004). In an analysis stratified by cervical cancer group, significant associations were observed in the allelic model (G vs C, OR=0.46, 95% CI=0.32-0.66, P<0.0001), and dominant model (GG/GC vs CC, OR=0.45, 95% CI=0.3-0.66, P<0.0001). Subgroup analysis also revealed a decreased risk for esophageal squamous cell carcinoma in the homozygote model (GG vs CC, OR=0.45, 95% CI=0.27-0.75, P=0.002) and recessive model (GG vs GC/CC, OR=0.46, 95% CI=0.28-0.75, P=0.002). This meta-analysis suggests that the miR-124 rs531564 C > G polymorphism is an important risk factor for cancers among the Chinese population.