• 제목/요약/키워드: miR-23b

검색결과 50건 처리시간 0.026초

자궁내막암종에서 miR-23b와 miR-203 발현 비교 (Comparison of the miR-23b and miR-203 Expressions in Endometrial Cancer)

  • 이경은
    • 대한임상검사과학회지
    • /
    • 제49권4호
    • /
    • pp.455-459
    • /
    • 2017
  • MicroRNA는 작은 비암호화 RNA로서 유전자 발현을 조절한다. 다양한 인체 종양에서 특이 miRNA 발현의 변화가 보고되면서 종양 발생에 중요한 역할을 수행하는 것으로 알려졌다. 최근에는 자궁내막암종을 포함한 다양한 암종에서 여러 miRNA의 비정상적인 발현이 보고되었으나, miR-23b와 miR-203 발현에 대한 연구 결과는 아직 국내에 보고되지 않았다. 따라서 본 연구에서는 자궁내막암종에서 miR-23b와 miR-203의 발현을 비교하고 상호 연관성을 분석하고자 하였다. 인체 자궁내막암종으로 진단된 파라핀 블록 42건을 대상으로 quantitative real-time PCR을 이용하여 miRNA 발현 수치를 분석하였다. miR-23b 발현 수치는 $2.70{\pm}4.45$로 miR-203의 발현 수치 $-2.34{\pm}4.08$ 보다 높게 나타났다. 또한 miR-23b는 총 42건 중 30건(71.4%)에서 양의 발현이 나타났고, miR-203은 총 42건 중 29건(69.0%)에서 음의 발현이 나타났으며, 이는 통계학적으로 유의한 차이를 나타냈다(p=0.0005). 따라서 본 연구에서는 miR-23b와 miR-203 발현은 자궁내막암종 발생에 연관이 있을 것으로 추정되며, 향후 miR-23b 와 miR-203 발현과 조직특이 단백 발현과의 상호 연관성에 대한 연구가 더 필요할 것으로 사료된다.

Lactate promotes vascular smooth muscle cell switch to a synthetic phenotype by inhibiting miR-23b expression

  • Hu, Yanchao;Zhang, Chunyan;Fan, Yajie;Zhang, Yan;Wang, Yiwen;Wang, Congxia
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권6호
    • /
    • pp.519-530
    • /
    • 2022
  • Recent research indicates that lactate promotes the switching of vascular smooth muscle cells (VSMCs) to a synthetic phenotype, which has been implicated in various vascular diseases. This study aimed to investigate the effects of lactate on the VSMC phenotype switch and the underlying mechanism. The CCK-8 method was used to assess cell viability. The microRNAs and mRNAs levels were evaluated using quantitative PCR. Targets of microRNA were predicted using online tools and confirmed using a luciferase reporter assay. We found that lactate promoted the switch of VSMCs to a synthetic phenotype, as evidenced by an increase in VSMC proliferation, mitochondrial activity, migration, and synthesis but a decrease in VSMC apoptosis. Lactate inhibited miR-23b expression in VSMCs, and miR-23b inhibited VSMC's switch to the synthetic phenotype. Lactate modulated the VSMC phenotype through downregulation of miR-23b expression, suggesting that overexpression of miR-23b using a miR-23b mimic attenuated the effects of lactate on VSMC phenotype modulation. Moreover, we discovered that SMAD family member 3 (SMAD3) was the target of miR-23b in regulating VSMC phenotype. Further findings suggested that lactate promotes VSMC switch to synthetic phenotype by targeting SMAD3 and downregulating miR-23b. These findings suggest that correcting the dysregulation of miR-23b/SMAD3 or lactate metabolism is a potential treatment for vascular diseases.

미만성 거대 B 세포 림프종(DLBCL)에서 microRNA-23b의 잠재적 종양 억제자로서의 효과 (MicroRNA-23b is a Potential Tumor Suppressor in Diffuse Large B-cell Lymphoma)

  • 남제현;김은경;김진영;정다움;김동욱;곽보미;김상우
    • 생명과학회지
    • /
    • 제27권2호
    • /
    • pp.149-154
    • /
    • 2017
  • 미만성 거대 B 세포 림프종(DLBCL)은 비호지킨 림프종에서 가장 흔한 형태이다. DLBCL에서 약물치료에 대한 연구가 많은 진전을 보였지만, 아직 많은 환자의 경우 DLBCL로 인한 사망률이 상당하다. 따라서 DLBCL에 대한 이해와 새로운 표적 치료제의 개발이 필요하다. PDE (인산이에스테르 가수분해효소)4B는 최근 시행된 유전자 발현 프로파일링에서 약제내성을 가지는 DLBCL에서 과발현 되는 유전자로 밝혀졌다. PDE4B의 주된 역할은 이차전달자인 고리형 AMP (cylclic AMP, cAMP)를 5'AMP로의 가수분해를 촉진시켜 cAMP를 비활성화 시키는 것이다. cAMP는 B 세포에서 세포증식 저해와 세포사멸을 유도하고 PDE4B는 B 세포에서 이러한 cAMP의 기능을 소멸시키는 것으로 알려져 있다. 그러나 PDE4B의 과발현이 어떤 기작에 의한 것인지는 연구가 미비하다. 본 논문에서는 비정상적으로 발현된 마이크로 RNA (microRNA, miRNA)가 PDE4B의 과발현에 관련되어 있을 것이라는 가정하에 실험을 진행하였다. PDE4B 3'-UTR에는 세 개의 miR-23b 예상 결합부위가 존재하고, 이는 luciferase reporter assay를 통해서 확인하였다. 흥미롭게도, miR-23b 결합 부위들은 인간에서부터 도마뱀에 이르기까지 진화적으로 보존되어 있었고, 이는 세포 생리학적 측면에서 PDE4B-miR-23b 사이의 상호작용이 중요한 역할을 수행함을 암시하고 있다. miR-23b의 과발현은 PDE4B의 mRNA 발현을 감소시키고 세포내의 cAMP의 농도를 증가시켰다. 뿐만 아니라, miR-23b의 발현은 아데닐산고리화효소(adenylyl cyclase)의 활성약제인 forskolin이 처리된 경우에만 DLBCL 세포들의 증식과 생존을 억제하였다. 이는 miR-23b는 PDE4B 발현을 감소시킴으로써 세포증식과 생존을 조절함을 보여주는 것이다. 이를 통해 생각해 볼 때, miR-23b는 PDE4B를 억제함으로써 DLBCL에서 나타나는 항암제 내성을 극복할 수 있고, 따라서 miR-23b는 잠재적 종양 억제자로서 효과적인 치료적 타겟으로 예상된다.

Helicobacter pylori 감염 위상피세포에서 MicroRNA 발현 변화 (MicroRNA Profile in the Helicobacter pylori-infected Gastric Epithelial Cells)

  • 김창환;김성수;김태호;정우철;김재광
    • Journal of Digestive Cancer Research
    • /
    • 제5권2호
    • /
    • pp.105-112
    • /
    • 2017
  • 위암 발병에 관여하는 Helicobacter pylori는 위상피세포내에서 많은 miRNA의 변화를 유도하여 발암과정에 역할을 할 것으로 추정하고 있다. 현재까지 H. pylori 감염 시 상피세포에서 miRNA 변화에 대해 명확히 밝혀져 있지 않다. 본 연구의 목적은 H. pylori에 감염된 위상피세포에서 miRNA의 발현 변화를 관찰하고자 하였다. H. pylori에 6시간 동안 감염시킨 AGS 위상피세포주와 AGS 세포주에 3개월 이상 장기간 H. pylori를 감염시켜 얻은 세포주(HS3C)를 대상으로 하였다. 대상 세포주로 부터 miRNA만을 분리한 후, custom microarray를 이용하여 발현 변화를 관찰하였다. 또한 microarray에서 유의한 증감이 관찰된 목표 유전자를 선별하여 real-time PCR을 이용하여 정량적 변화를 확인하였다. miRNA microarray 분석 결과를 토대로 변화가 관찰된 12개의 miRNA를 선별하였다. Real-time PCR 검사로 miRNA의 변화를 검정한 결과, miR-21, miR-221, miR-222은 6시간 동안 감염시킨 AGS 위상피세포주와 HS3C 세포주 모두에서 증가되어 있었다. miR-99b, miR-200b, miR-203b, miR-373은 6시간 동안 감염시킨 AGS 위상피세포주와 HS3C 세포주 모두에서 감소되어 있었다. miR-23a, miR-23b, miR-125b, miR-141, miR-155는 H. pylori에 6시간 동안 감염된 AGS 위상피세포주에서 감소되었으나, HS3C에서는 증가되어 있었다. H. pylori 감염 위상피세포주에서 miR-21, miR-99b, miR-125b, miR-200b, miR-203b, miR-221, miR-222, miR-373의 발현 변화는 위암의 발생기전에 관여할 것으로 추정되며, 각각의 기능과 역할의 규명에 대해서는 후속 연구가 필요하다.

  • PDF

PLK2 Single Nucleotide Variant in Gastric Cancer Patients Affects miR-23b-5p Binding

  • Dominkus, Pia Puzar;Mesic, Aner;Hudler, Petra
    • Journal of Gastric Cancer
    • /
    • 제22권4호
    • /
    • pp.348-368
    • /
    • 2022
  • Purpose: Chromosomal instability is a hallmark of gastric cancer (GC). It can be driven by single nucleotide variants (SNVs) in cell cycle genes. We investigated the associations between SNVs in candidate genes, PLK2, PLK3, and ATM, and GC risk and clinicopathological features. Materials and Methods: The genotyping study included 542 patients with GC and healthy controls. Generalized linear models were used for the risk and clinicopathological association analyses. Survival analysis was performed using the Kaplan-Meier method. The binding of candidate miRs was analyzed using a luciferase reporter assay. Results: The PLK2 Crs15009-Crs963615 haplotype was under-represented in the GC group compared to that in the control group (Pcorr=0.050). Male patients with the PLK2 rs963615 CT genotype had a lower risk of GC, whereas female patients had a higher risk (P=0.023; P=0.026). The PLK2 rs963615 CT genotype was associated with the absence of vascular invasion (P=0.012). The PLK3 rs12404160 AA genotype was associated with a higher risk of GC in the male population (P=0.015). The ATM Trs228589-Ars189037-Grs4585 haplotype was associated with a higher risk of GC (P<0.001). The ATM rs228589, rs189037, and rs4585 genotypes TA+AA, AG+GG, and TG+GG were associated with the absence of perineural invasion (P=0.034). In vitro analysis showed that the cancer-associated miR-23b-5p mimic specifically bound to the PLK2 rs15009 G allele (P=0.0097). Moreover, low miR-23b expression predicted longer 10-year survival (P=0.0066) in patients with GC. Conclusions: PLK2, PLK3, and ATM SNVs could potentially be helpful for the prediction of GC risk and clinicopathological features. PLK2 rs15009 affects the binding of miR-23b-5p. MiR-23b-5p expression status could serve as a prognostic marker for survival in patients with GC.

Screening of MicroRNA in Patients with Esophageal Cancer at Same Tumor Node Metastasis Stage with Different Prognoses

  • Zhao, Bao-Sheng;Liu, Shang-Guo;Wang, Tian-Yun;Ji, Ying-Hua;Qi, Bo;Tao, Yi-Peng;Li, Han-Chen;Wu, Xiang-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.139-143
    • /
    • 2013
  • Patients at the same pathological stage of esophageal cancer (EC) that received the same surgical therapy by the same surgeon may have distinct prognoses. The current study aimed to explore the possibility of differentially-expressed microRNAs (miRNAs) underlying this phenomenon. Samples were collected from EC patients at the same tumor node metastasis (TNM) stage but with different prognoses. Paracancerous normal tissues were taken as controls. The specimens were histopathologically analyzed. Differentially-expressed miRNAs were analyzed using real-time quantitative reverse transcription polymerase chain reaction. Compared with patients with poor prognosis, those with good prognosis exhibited 88 two-fold or more than two-fold increased miRNA fragments and 4 half-decreased miRNAs. The most noticeably up-regulated miRNAs included hsa-miR-31, hsa-miR-196b, hsa-miR-652, hsa-miR-125a-5p, hsa-miR-146b, hsa-miR-200c, hsa-miR-23b, hsa-miR-29a, hsa-miR-186, hsa-miR-205, hsa-miR-376a, hsa-miR-410, hsa-miR-532-3p, and hsa-miR-598, whereas the most significantly-downregulated miRNAs were hsa-let-7e, hsa-miR-130b, and hsa-miR-103. EC patients at same TNM stage but with different prognoses show differentially-expressed miRNAs.

The cooperative regulatory effect of the miRNA-130 family on milk fat metabolism in dairy cows

  • Xiaofen Li;Yanni Wu;Xiaozhi Yang;Rui Gao;Qinyue Lu;Xiaoyang Lv;Zhi Chen
    • Animal Bioscience
    • /
    • 제37권7호
    • /
    • pp.1289-1302
    • /
    • 2024
  • Objective: There is a strong relationship between the content of beneficial fatty acids in milk and milk fat metabolic activity in the mammary gland. To improve milk quality, it is therefore necessary to study fatty acid metabolism in bovine mammary gland tissue. In adipose tissue, peroxisome proliferator-activated receptor gamma (PPARG), the core transcription factor, regulates the fatty acid metabolism gene network and determines fatty acid deposition. However, its regulatory effects on mammary gland fatty acid metabolism during lactation have rarely been reported. Methods: Transcriptome sequencing was performed during the prelactation period and the peak lactation period to examine mRNA expression. The significant upregulation of PPARG drew our attention and led us to conduct further research. Results: According to bioinformatics prediction, dual-luciferase reporter system detection, real-time quantitative reverse transcription polymerase chain reaction and Western blotting, miR-130a and miR-130b could directly target PPARG and inhibit its expression. Furthermore, triglyceride and oil red O staining proved that miR-130a and miR-130b inhibited milk fat metabolism in bovine mammary epithelial cells (BMECs), while PPARG promoted this metabolism. In addition, we also found that the coexpression of miR-130a and miR-130b significantly enhanced their ability to regulate milk fat metabolism. Conclusion: In conclusion, our findings indicated that miR-130a and miR-130b could target and repress PPARG and that they also have a functional superposition effect. miR-130a and miR-130b seem to synergistically regulate lipid catabolism via the control of PPARG in BMECs. In the long-term, these findings might be helpful in developing practical means to improve high-quality milk.

Role of miR-511 in the Regulation of OATP1B1 Expression by Free Fatty Acid

  • Peng, Jin Fu;Liu, Li;Guo, Cheng Xian;Liu, Shi Kun;Chen, Xiao Ping;Huang, Li Hua;Xiang, Hong;Huang, Zhi Jun;Yuan, Hong;Yang, Guo Ping
    • Biomolecules & Therapeutics
    • /
    • 제23권5호
    • /
    • pp.400-406
    • /
    • 2015
  • MicroRNAs (miRNAs) are a family of non-coding RNA that are able to adjust the expression of many proteins, including ATP-binding cassette transporter and organic cation transporter. We sought to evaluate the effect of miR-511 on the regulation of OATP1B1 expression by free fatty acids. When using free fatty acids to stimulate Chang liver cells, we found that the expression of miR-511 increased significantly while the expression of OATP1B1 decreased. We also proved that SLCO1B1 is the target gene of miR-511 with a bioinformatics analysis and using the dual luciferase reporter assay. Furthermore, the expressions of SLCO1B1 and OATP1B1 decreased if transfecting Chang liver cells with miR-511, but did not increase when transfecting the inhibitors of miR-511 into steatosis cells. Our study indicates that miR-511 may play an important role in the regulation of OATP1B1 expression by free fatty acids.

Comparison of miR-106b, miR-191, and miR-30d expression dynamics in milk with regard to its composition in Holstein and Ayrshire cows

  • Marina V. Pozovnikova;Viktoria B. Leibova;Olga V. Tulinova;Elena A. Romanova;Artem P. Dysin;Natalia V. Dementieva;Anastasiia I. Azovtseva;Sergey E. Sedykh
    • Animal Bioscience
    • /
    • 제37권6호
    • /
    • pp.965-981
    • /
    • 2024
  • Objective: Milk composition varies considerably and depends on paratypical, genetic, and epigenetic factors. MiRNAs belong to the class of small non-coding RNAs; they are one of the key tools of epigenetic control because of their ability to regulate gene expression at the post-transcriptional level. We compared the relative expression levels of miR-106b, miR-191, and miR-30d in milk to demonstrate the relationship between the content of these miRNAs with protein and fat components of milk in Holstein and Ayrshire cattle. Methods: Milk fat, protein, and casein contents were determined in the obtained samples, as well as the content of the main fatty acids (g/100 g milk), including: saturated acids, such as myristic (C14:0), palmitic (C16:0), and stearic (C18:0) acids; monounsaturated acids, including oleic (C18:1) acid; as well as long-, medium- and short-chain, polyunsaturated, and trans fatty acids. Real-time stem-loop one-tube reverse transcription polymerase chain reaction with TaqMan probes was used to measure the miRNA expression levels. Results: The miRNA expression levels in milk samples were found to be decreased in the first two months in Holstein breed, and in the first four months in Ayrshire breed. Correlation analysis did not reveal any dependence between changes in the expression level of miRNA and milk fat content, but showed a multidirectional relationship with individual milk fatty acids. Positive associations between the expression levels of miR-106b and miR-30d and protein and casein content were found in the Ayrshire breed. Receiver operating characteristic curve analysis showed that miR-106b and miR-30d expression levels can cause changes in fatty acid and protein composition of milk in Ayrshire cows, whereas miR-106b expression level determines the fatty acid composition in Holsteins. Conclusion: The data obtained in this study showed that miR-106b, miR-191, and miR-30d expression levels in milk samples have peculiarities associated with breed affiliation and the lactation period.

MiR-188-5p regulates the proliferation and differentiation of goat skeletal muscle satellite cells by targeting calcium/calmodulin dependent protein kinase II beta

  • Jing Jing;Sihuan Zhang;Jinbo Wei;Yuhang Yang;Qi Zheng;Cuiyun Zhu;Shuang Li;Hongguo Cao;Fugui Fang;Yong Liu;Ying-hui Ling
    • Animal Bioscience
    • /
    • 제36권12호
    • /
    • pp.1775-1784
    • /
    • 2023
  • Objective: The aim of this study was to reveal the role and regulatory mechanism of miR-188-5p in the proliferation and differentiation of goat muscle satellite cells. Methods: Goat skeletal muscle satellite cells isolated in the pre-laboratory were used as the test material. First, the expression of miR-188-5p in goat muscle tissues at different developmental stages was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, miR-188-5p was transfected into goat skeletal muscle satellite cells by constructing mimics and inhibitors of miR-188-5p, respectively. The changes of differentiation marker gene expression were detected by qPCR method. Results: It was highly expressed in adult goat latissimus dorsi and leg muscles, goat fetal skeletal muscle, and at the differentiation stage of muscle satellite cells. Overexpression and interference of miR-188-5p showed that miR-188-5p inhibited the proliferation and promoted the differentiation of goat muscle satellite cells. Target gene prediction and dual luciferase assays showed that miR-188-5p could target the 3'untranslated region of the calcium/calmodulin dependent protein kinase II beta (CAMK2B) gene and inhibit luciferase activity. Further functional studies revealed that CAMK2B promoted the proliferation and inhibited the differentiation of goat muscle satellite cells, whereas si-CAMK2B restored the function of miR-188-5p inhibitor. Conclusion: These results suggest that miR-188-5p inhibits the proliferation and promotes the differentiation of goat muscle satellite cells by targeting CAMK2B. This study will provide a theoretical reference for future studies on the molecular mechanisms of skeletal muscle development in goats.