• Title/Summary/Keyword: mi transcription factor

Search Result 211, Processing Time 0.023 seconds

miR-133a-3p and miR-145-5p co-promote goat hair follicle stem cell differentiation by regulating NANOG and SOX9 expression

  • Jian Wang;Xi Wu;Liuming Zhang;Qiang Wang;Xiaomei Sun;Dejun Ji;Yongjun Li
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.609-621
    • /
    • 2024
  • Objective: Hair follicle stem cells (HFSCs) differentiation is a critical physiological progress in skin hair follicle (HF) formation. Goat HFSCs differentiation is one of the essential processes of superior-quality brush hair (SQBH) synthesis. However, knowledge regarding the functions and roles of miR-133a-3p and miR-145-5p in differentiated goat HFSCs is limited. Methods: To examine the significance of chi-miR-133a-3p and chi-miR-145-5p in differentiated HFSCs, overexpression and knockdown experiments of miR-133a-3p and miR-145-5p (Mimics and Inhibitors) separately or combined were performed. NANOG, SOX9, and stem cell differentiated markers (β-catenin, C-myc, Keratin 6 [KRT6]) expression levels were detected and analyzed by using real-time quantitative polymerase chain reaction, western blotting, and immunofluorescence assays in differentiated goat HFSCs. Results: miR-133a-3p and miR-145-5p inhibit NANOG (a gene recognized in keeping and maintaining the totipotency of embryonic stem cells) expression and promote SOX9 (an important stem cell transcription factor) expression in differentiated stem cells. Functional studies showed that miR-133a-3p and miR-145-5p individually or together overexpression can facilitate goat HFSCs differentiation, whereas suppressing miR-133a-3p and miR-145-5p or both inhibiting can inhibit goat HFSCs differentiation. Conclusion: These findings could more completely explain the modulatory function of miR-133a-3p and miR-145-5p in goat HFSCs growth, which also provide more understandings for further investigating goat hair follicle development.

Depigmenting Effects of Mistletoe (Viscum album var. coloratum) Extracts (겨우살이 추출물의 미백 효과)

  • Hah, Young-Sool;Kim, Eun-Ji;Goo, Young Min;Kil, Young Sook;Sin, Seung Mi;Kim, Sang Gon;Kang, Ha Eun;Yoon, Tae-Jin
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.355-361
    • /
    • 2022
  • Melanin pigments are the main cause of skin color. They are produced in melanocytes and then transferred to keratinocytes, which eventually gives the skin surface a variety of colors. Although many skin-lightening or depigmenting agents have been developed, the demand for materials to reduce pig- mentation is still increasing. Here, we tried to find materials for skin-lightening or depigmentation using natural compounds and found that mistletoe (Viscum album var. coloratum) extracts (ME) had an inhibitory effect on tyrosinase activity. As a result, ME significantly reduced pigmentation in human primary melanocytes. In addition, a promoter reporter assay revealed that ME inhibited the transcription of microphthalmia-associated transcription factor (MITF), melanophilin (MLPH), tyrosinase-related protein-2 (TRP-2), and tyrosinase (TYR) genes in HM3KO melanoma cells. In addition, ME decreased the protein level for pigmentation-related molecules, such as TYR and TRP-1. Furthermore, it markedly inhibited the melanogenesis of zebrafish embryos, an in vivo evaluation model for pigmentation. To elucidate the action mechanism of ME, we investigated its effects on intracellular signaling. Eventually, the ME dramatically decreased the phosphorylation of the cAMP responsive element binding protein (CREB), AKT, and ERK. The data suggest that ME may inhibit the melanogenesis pathway by regulating the signaling pathway related to pigmentation. Taken together, these data propose that ME can be developed as a depigmenting or skin-lightening agent.

Regulation of Matrix Metalloproteinase-1 Expression by the Homeodomain Transcription Factor Caudal in Drosophila Intestine (초파리 장조직에서 Caudal 전사조절인자에 의한 matrix metalloproteinase-1 발현 조절)

  • Lee, Shin-Hae;Hwang, Mi-Sun;Choi, Yoon-Jeong;Kim, Young-Shin;Yoo, Mi-Ae
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1600-1607
    • /
    • 2012
  • The matrix metalloproteinase (MMP) family plays essential roles in physiological processes such as embryonic development, angiogenesis, wound healing, and tissue homeostasis as a consequence of MMPr capacity for breaking down many types of extracellular matrix proteins. Imbalanced regulation of MMP expression can also lead to pathological conditions such as tumor progression. We recently reported that the Drosophila Mmp1 gene is highly expressed in the digestive tract and is required for the maintenance of intestinal homeostasis such as by restriction of uncontrolled intestinal stem cell proliferation. However, the regulatory mechanisms of MMP gene expression in the intestine remain unclear. In this study, we determined that the expression of Mmp1 is regulated by the homeodomain transcription factor Caudal. Experiments using the targeted expression of Caudal under the regulation of Gal4-UAS system indicated that endogenous Caudal is required for the Mmp1 gene expression in the adult Drosophila intestine and that exogenous Caudal induces Mmp1 expression. Transient transfection experiments indicated that Caudal can activate the promoter activity of Mmp1 and that several putative Caudal binding sites in the 5'-flanking region of the Mmp1 gene may be critical to the upregulation by Caudal. Our data suggest that Mmp1 is one of the target genes of Caudal in physiological normal condition and in tumorigenesis.

Effects of Listener's Experience, Severity of Speaker's Articulation, and Linguistic Cues on Speech Intelligibility in Congenitally Deafened Adults with Cochlear Implants (청자의 경험, 화자의 조음 중증도, 단서 유형이 인공와우이식 선천성 농 성인의 말명료도에 미치는 영향)

  • Lee, Young-Mee;Sung, Jee-Eun;Park, Jeong-Mi;Sim, Hyun-Sub
    • Phonetics and Speech Sciences
    • /
    • v.3 no.1
    • /
    • pp.125-134
    • /
    • 2011
  • The current study investigated the effects of experience of deaf speech, severity of speaker's articulation, and linguistic cues on speech intelligibility of congenitally deafened adults with cochlear implants. Speech intelligibility was judged by 28 experienced listeners and 40 inexperienced listeners using a word transcription task. A three-way (2 $\times$ 2 $\times$ 4) mixed design was used with the experience of deaf speech (experienced/inexperienced listener) as a between-subject factor, the severity of speaker's articulation (mild to moderate/moderate to severe), and linguistic cues (no/phonetic/semantic/combined) as within-subject factors. The dependent measure was the number of correctly transcribed words. Results revealed that three main effects were statistically significant. Experienced listeners showed better performance on the transcription than inexperienced listeners, and listeners were better in transcribing speakers who were mild to moderate than moderate to severe. There were significant differences in speech intelligibility among the four different types of cues, showing that the combined cues provided the greatest enhancement of the intelligibility scores (combined > semantic > phonological > no). Three two-way interactions were statistically significant, indicating that the type of cues and severity of speakers differentiated experienced listeners from inexperienced listeners. The current results suggested that the use of a combination of linguistic cues increased the speech intelligibility of congenitally deafened adults with cochlear implants, and the experience of deaf speech was critical especially in evaluating speech intelligibility of severe speakers compared to that of mild speakers.

  • PDF

A WUSCHEL Homeobox Transcription Factor, OsWOX13, Enhances Drought Tolerance and Triggers Early Flowering in Rice

  • Minh-Thu, Pham-Thi;Kim, Joung Sug;Chae, Songhwa;Jun, Kyong Mi;Lee, Gang-Seob;Kim, Dong-Eun;Cheong, Jong-Joo;Song, Sang Ik;Nahm, Baek Hie;Kim, Yeon-Ki
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.781-798
    • /
    • 2018
  • Plants have evolved strategies to cope with drought stress by maximizing physiological capacity and adjusting developmental processes such as flowering time. The WOX13 orthologous group is the most conserved among the clade of WOX homeodomain-containing proteins and is found to function in both drought stress and flower development. In this study, we isolated and characterized OsWOX13 from rice. OsWOX13 was regulated spatially in vegetative organs but temporally in flowers and seeds. Overexpression of OsWOX13 (OsWOX13-ov) in rice under the rab21 promoter resulted in drought resistance and early flowering by 7-10 days. Screening of gene expression profiles in mature leaf and panicles of OsWOX13-ov showed a broad spectrum of effects on biological processes, such as abiotic and biotic stresses, exerting a cross-talk between responses. Protein binding microarray and electrophoretic mobility shift assay analyses supported ATTGATTG as the putative cis-element binding of OsWOX13. OsDREB1A and OsDREB1F, drought stress response transcription factors, contain ATTGATTG motif(s) in their promoters and are preferentially expressed in OsWOX13-ov. In addition, Heading date 3a and OsMADS14, regulators in the flowering pathway and development, were enhanced in OsWOX13-ov. These results suggest that OsWOX13 mediates the stress response and early flowering and, thus, may be a regulator of genes involved in drought escape.

Anti-obesity Effects of Barley Sprout Young Leaf on 3T3-L1 Cells and High-fat Diet-induced Obese Mice (지방분화가 유도된 3T3-L1 세포와 고지방식이로 유도된 마우스에서 보리순 물추출물의 항비만 효과)

  • Kang, Byoung Man;Sim, Mi Ok;Kim, Min Suk;Yoo, Seung Jin;Yeo, Jun Hwan;Jung, Won Seok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.6
    • /
    • pp.367-374
    • /
    • 2017
  • Background: An imbalance in energy intake and expenditure can cause obesity, which is a major risk factor for chronic diseases such as heart disease, type 2 diabetes, insulin resistance, cancers and hyperlipidemia. Methods and Results: In this study, we evaluated the anti-obesity effects of a water extract from the young leaves of barley sprout (BS) in 3T3-L1 cells and in high-fat diet (HFD)-induced obese mice (HF). Lipid accumulation measurement indicates that BS markedly inhibited adipogenesis by reducing lipid droplet production in a dose-dependent manner. Furthermore, the mRNA expression of adipogenic transcription factors peroxisome proliferator-activated receptor-${\gamma}$ and fatty acid synthetase, CCAAT/enhancer binding protein-${\alpha}$ and fatty acid binding protein 4 in 3T3-L1 cells was significantly inhibited by BS treatment. In an in vivo test, the BS-administered group of HFD-induced mice showed less body weight gain, and lower liver and epididymal white adipose tissue weights. The BS-treated mice showed decreased serum levels of leptin and lipids compared to untreated HFD mice and the levels of adiponectin and the HDL-cholesterol/total cholesterol ratio increased. These results indicate that BS inhibits body fat accumulation by reducing the mRNA expression of lipogenesis transcription factors and increasing serum adipokine concentration in in vitro and in vivo tests. Conclusions: BS reduced high fat diet-induced weight gain and had a positive effect on dyslipidemia.

The Effect of Adiponectin on the Regulation of Filaggrin Expression in Normal Human Epidermal Keratinocytes

  • Choi, Sun Young;Kim, Min Jeong;Ahn, Ga Ram;Park, Kui Young;Lee, Mi-Kyung;Seo, Seong Jun
    • Annals of dermatology
    • /
    • v.30 no.6
    • /
    • pp.645-652
    • /
    • 2018
  • Background: Adiponectin, an adipokine secreted from adipocytes, affects energy metabolism and also shows anti-diabetic and anti-inflammatory properties. Recent studies have reported that adiponectin plays a role in regulating skin inflammation. Objective: This study aimed to investigate the effect of adiponectin on the expression of filaggrin (FLG) in normal human epidermal keratinocytes (NHEKs). Methods: NHEKs were serum-starved for 6h before being treated with adiponectin. Afterward, cell viability was assessed by MTT assay. We also treated with calcium, interleukin (IL)-4, and IL-13 to provide positive and negative comparative controls, respectively. Gene mRNA expression was quantified using real time reverse transcription polymerase chain reaction, and protein expression was evaluated using Western blot. To evaluate the relationship among mitogen-activated protein kinases (MAPKs), activator protein 1 (AP-1), and FLG, we also treated cells with inhibitors for MAPKs JNK, p38, and ERK1/2. Results: FLG and FLG-2 mRNA expression in NHEKs significantly increased after treatment with $10{\mu}g/ml$ adiponectin. Adiponectin also restored FLG and FLG-2 mRNA expression that was otherwise inhibited by treatment with IL-4 and IL-13. Adiponectin induced FLG expression via AP-1 and MAPK signaling. Conclusion: Adiponectin positively regulated the expression of FLG and could be useful as a therapeutic agent to control diseases related to disrupted skin barrier function.

Hepatitis C Virus Nonstructural 5A Protein (HCV-NS5A) Inhibits Hepatocyte Apoptosis through the NF-κb/miR-503/bcl-2 Pathway

  • Xie, Zhengyuan;Xiao, Zhihua;Wang, Fenfen
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.202-210
    • /
    • 2017
  • The nonstructural protein 5A (NS5A) encoded by the human hepatitis C virus (HCV) RNA genome is a multifunctional phosphoprotein. To analyse the influence of NS5A on apoptosis, we established an Hep-NS5A cell line (HepG2 cells that stably express NS5A) and induced apoptosis using tumour necrosis factor $(TNF)-{\alpha}$. We utilised the MTT assay to detect cell viability, real-time quantitative polymerase chain reaction and Western blot to analyse gene and protein expression, and a luciferase reporter gene experiment to investigate the targeted regulatory relationship. Chromatin immunoprecipitation was used to identify the combination of $NF-{\kappa}B$ and miR-503. We found that overexpression of NS5A inhibited $TNF-{\alpha}$-induced hepatocellular apoptosis via regulating miR-503 expression. The cell viability of the $TNF-{\alpha}$ induced Hep-mock cells was significantly less than the viability of the $TNF-{\alpha}$ induced Hep-NS5A cells, which demonstrates that NS5A inhibited $TNF-{\alpha}$-induced HepG2 cell apoptosis. Under $TNF-{\alpha}$ treatment, miR-503 expression was decreased and cell viability and B-cell lymphoma 2 (bcl-2) expression were increased in the Hep-NS5A cells. Moreover, the luciferase reporter gene experiment verified that bcl-2 was a direct target of miR-503, NS5A inhibited $TNF{\alpha}$-induced $NF-{\kappa}B$ activation and $NF-{\kappa}B$ regulated miR-503 transcription by combining with the miR-503 promoter. After the Hep-NS5A cells were transfected with miR-503 mimics, the data indicated that the mimics could reverse $TNF-{\alpha}$-induced cell apoptosis and blc-2 expression. Collectively, our findings suggest a possible molecular mechanism that may contribute to HCV treatment in which NS5A inhibits $NF-{\kappa}B$ activation to decrease miR-503 expression and increase bcl-2 expression, which leads to a decrease in hepatocellular apoptosis.

Inhibition of miR-128 Abates Aβ-Mediated Cytotoxicity by Targeting PPAR-γ via NF-κB Inactivation in Primary Mouse Cortical Neurons and Neuro2a Cells

  • Geng, Lijiao;Zhang, Tao;Liu, Wei;Chen, Yong
    • Yonsei Medical Journal
    • /
    • v.59 no.9
    • /
    • pp.1096-1106
    • /
    • 2018
  • Purpose: Alzheimer's disease (AD) is the sixth most common cause of death in the United States. MicroRNAs have been identified as vital players in neurodegenerative diseases, including AD. microRNA-128 (miR-128) has been shown to be dysregulated in AD. This study aimed to explore the roles and molecular mechanisms of miR-128 in AD progression. Materials and Methods: Expression patterns of miR-128 and peroxisome proliferator-activated receptor gamma ($PPAR-{\gamma}$) messenger RNA in clinical samples and cells were measured using RT-qPCR assay. $PPAR-{\gamma}$ protein levels were determined by Western blot assay. Cell viability was determined by MTT assay. Cell apoptotic rate was detected by flow cytometry via double-staining of Annexin V-FITC/PI. Caspase 3 and $NF-{\kappa}B$ activity was determined by a Caspase 3 Activity Assay Kit or $NF-{\kappa}B$ p65 Transcription Factor Assay Kit, respectively. Bioinformatics prediction and luciferase reporter assay were used to investigate interactions between miR-128 and $PPAR-{\gamma}$ 3'UTR. Results: MiR-128 expression was upregulated and $PPAR-{\gamma}$ expression was downregulated in plasma from AD patients and $amyloid-{\beta}$ $(A{\beta})-treated$ primary mouse cortical neurons (MCN) and Neuro2a (N2a) cells. Inhibition of miR-128 decreased $A{\beta}-mediated$ cytotoxicity through inactivation of $NF-{\kappa}B$ in MCN and N2a cells. Moreover, $PPAR-{\gamma}$ was a target of miR-128. $PPAR-{\gamma}$ upregulation attenuated $A{\beta}-mediated$ cytotoxicity by inactivating $NF-{\kappa}B$ in MCN and N2a cells. Furthermore, $PPAR-{\gamma}$ downregulation was able to abolish the effect of anti-miR-128 on cytotoxicity and $NF-{\kappa}B$ activity in MCN and N2a cells. Conclusion: MiR-128 inhibitor decreased $A{\beta}-mediated$ cytotoxicity by upregulating $PPAR-{\gamma}$ via inactivation of $NF-{\kappa}B$ in MCN and N2a cells, providing a new potential target in AD treatment.

Whitening Activities of Extracts of Seomaeyakssuk (Artemisia argyi H.) (섬애약쑥 (Artemisia argyi H.) 추출물의 미백활성)

  • Lee, Hea-Jin;Lim, Mi-Hye
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.241-249
    • /
    • 2020
  • This study investigated the whitening activity using seomaeyakssuk (Artemisia argyi H.) extract. Seomaeyakssuk was extracted from hot DW (AAD) and 70% ethanol (AAE). And confirmed safety through assessment of cytotoxicity. Also, whitening activities were measured through changes in the levels of extracellular melanin, melanin synthesis, cellular tyrosinase activity and transcription factor. The results confirmed that significant cytotoxicity does not appear in the concentration range of 50, 100, and 200 ㎍/㎖ of both extracts of this study. The production of extracellular melanin was slowed by AAD 45.0% and AAE 1.3% at 200 ㎍/㎖ concentration. Also, production of intracellular melanin was decreased AAD 37.2% and AAE 24.6%. In the case of intra cellular tyrosinase activity was reduced to AAD 49.2% and AAE 35.6% at 200 ㎍/㎖ concentration. The mRNA expression of tyrosinase, TRP-1 and TRP-2 significantly decreased by AAD 63.0%/AAE 58.0%, AAD 60.0%/AAE 56.0% and AAD 59.0%/AAE 53.0%, respectively, following the 200 ㎍/㎖ sample treatment when compared to the control. Both extracts showed efficient changes of production of whitening-related factor and transcription factor. But AAD was found to have a higher inhibitory effect than AAE. In other words, seomaeyakssuk was showed significant biological activities showing whitening without cytotoxicity. These results will be provided as fundamental data for further development of the new material of functional cosmetics to the results above.