• 제목/요약/키워드: metropolis genetic algorithm

검색결과 8건 처리시간 0.024초

구조물의 설계 최적화를 위한 메트로폴리스 유전알고리즘의 개발 및 적용 (Development and Application of Metropolis Genetic Algorithm for the Structural Design Optimization)

  • 박균빈;류연선;김정태;조현만
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.115-122
    • /
    • 2003
  • A Metropolis genetic algorithm(MGA) is developed and applied for the structural design optimization. In MGA favorable features of Metropolis algorithm in simulated annealing(SA) are incorporated in simple genetic algorithm(SGA), so that the MGA alleviates the disadvantage of finding imprecise solution in SGA and time-consuming computation in SA. Performances of MGA are compared with those of conventional algorithms such as Holland's SGA, Krishnakumar's micro genetic algorithm(μGA), and Kirkpatrick's SA. Typical numerical examples are used to evaluate the favorable features and applicability of MGA From the theoretical evaluation and numerical experience, it is concluded that the proposed MGA is a reliable and efficient tool for structural design optimization.

  • PDF

수학적 최적화 문제를 이용한 MGA의 성능평가 및 매개변수 연구 (Performance Evaluation and Parametric Study of MGA in the Solution of Mathematical Optimization Problems)

  • 조현만;이현진;류연선;김정태;나원배;임동주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.416-421
    • /
    • 2008
  • A Metropolis genetic algorithm (MGA) is a newly-developed hybrid algorithm combining simple genetic algorithm (SGA) and simulated annealing (SA). In the algorithm, favorable features of Metropolis criterion of SA are incorporated in the reproduction operations of SGA. This way, MGA alleviates the disadvantages of finding imprecise solution in SGA and time-consuming computation in SA. It has been successfully applied and the efficiency has been verified for the practical structural design optimization. However, applicability of MGA for the wider range of problems should be rigorously proved through the solution of mathematical optimization problems. Thus, performances of MGA for the typical mathematical problems are investigated and compared with those of conventional algorithms such as SGA, micro genetic algorithm (${\mu}GA$), and SA. And, for better application of MGA, the effects of acceptance level are also presented. From numerical Study, it is again verified that MGA is more efficient and robust than SA, SGA and ${\mu}GA$ in the solution of mathematical optimization problems having various features.

  • PDF

구조 최적화를 위한 Metropolis 유전자 알고리즘을 개발과 호율성 평가 (Development and Efficiency Evaluation of Metropolis GA for the Structural Optimization)

  • 박균빈;김정태;나원배;류연선
    • 한국전산구조공학회논문집
    • /
    • 제19권1호
    • /
    • pp.27-37
    • /
    • 2006
  • 모사풀림(SA)의 특징적인 Metropolis 규준을 단순 유전자 알고리즘(SGA)의 재생산 연산과정에 도입함으로써 Metropolis 유전자 알고리즘(MGA)이 개발되고, 구조 설계 최적화에 응용되었다. 이러한 결합을 통하여 MGA는 개체의 다양성을 유지하며, 초기 세대에서 나타날 수 있는 유용한 유전자 정보가 보존될 수 있다. 따라서 이 연구에서 제안된 MGA는, 국부적 최적해로 조기 수렴하게 되는 SGA의 단점과 정밀한 전역적 최적해를 찾기 위해 수없이 많은 계산을 해야 하는 SA의 단점을 극복하게 되었다 수치예를 통하여 MGA의 성능과 적용성을 재래의 알고리즘들과 비교하고 평가하였다. 특히 MGA의 성능 신뢰성과 강건성을 평가하는 데는 집단 크기와 최대 반복세대수의 효과를 인용하였다. 이론적 고찰과 수치예의 결과로부터, 이 연구에서 개발된 MGA가 효율성과 신뢰성을 갖춘 구조 설계 최적화의 도구로서 평가되었다.

구조물 최적설계를 위한 메타휴리스틱 알고리즘의 비교 연구 (An Comparative Study of Metaheuristic Algorithms for the Optimum Design of Structures)

  • 류연선;조현만
    • 수산해양교육연구
    • /
    • 제29권2호
    • /
    • pp.544-551
    • /
    • 2017
  • Metaheuristic algorithms are efficient techniques for a class of mathematical optimization problems without having to deeply adapt to the inherent nature of each problem. They are very useful for structural design optimization in which the cost of gradient computation can be very expensive. Among them, the characteristics of simulated annealing and genetic algorithms are briefly discussed. In Metropolis genetic algorithm, favorable features of Metropolis criterion in simulated annealing are incorporated in the reproduction operations of simple genetic algorithm. Numerical examples of structural design optimization are presented. The example structures are truss, breakwater and steel box girder bridge. From the theoretical evaluation and numerical experience, performance and applicability of metaheuristic algorithms for structural design optimization are discussed.

An evolutionary approach for structural reliability

  • Garakaninezhad, Alireza;Bastami, Morteza
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.329-339
    • /
    • 2019
  • Assessment of failure probability, especially for a complex structure, requires a considerable number of calls to the numerical model. Reliability methods have been developed to decrease the computational time. In this approach, the original numerical model is replaced by a surrogate model which is usually explicit and much faster to evaluate. The current paper proposed an efficient reliability method based on Monte Carlo simulation (MCS) and multi-gene genetic programming (MGGP) as a robust variant of genetic programming (GP). GP has been applied in different fields; however, its application to structural reliability has not been tested. The current study investigated the performance of MGGP as a surrogate model in structural reliability problems and compares it with other surrogate models. An adaptive Metropolis algorithm is utilized to obtain the training data with which to build the MGGP model. The failure probability is estimated by combining MCS and MGGP. The efficiency and accuracy of the proposed method were investigated with the help of five numerical examples.

내부 환보강 X형 및 T형 관이음부의 강도산정과 최적설계 (Strength Prediction and Optimum Design of Internally Ring-Stiffened Tubular X-and T-Joints)

  • 조현만;류연선;이현진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.315-320
    • /
    • 2007
  • An effective reinforcement method for steel tubular joints having a large chord diameter is the use of internal ring stiffeners. This paper presents the results of a numerical study on the static strength of internally ring-stiffened tubular X- and T-joints subjected to brace axial compression loading. Nonlinear finite element analyses are used to compute the joint strength. The influence of geometrical parameters has been studied and the maximum reinforcement effect of a ring stiffener has been evaluated. A strength ratio is defined. by the ratio of ring-stiffened joint strength to unstiffened joint strength, and an equation for this strength ratio is derived by regression analysis. Design optimization for ring stiffener of tubular joints is carried out using metropolis genetic algorithm.

  • PDF

케이슨 구조계의 설계 최적성 평가 (Methods of Design Optimality Evaluation for Caisson Structural Systems)

  • 최민희;류연선;조현만;나원배
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.89-96
    • /
    • 2005
  • Numerical procedure of design optimality evaluation is studied for caisson structural systems. Two kinds of evaluation methods can be considered; mathematical optimality criteria method (MOCM) and numerical optimization method (NOM). The choice of the method depends on the available information of the system MOCM can be used only when the information of all function values, gradients and Lagrange multipliers is available, which may not be realistic in practice. Therefore, in this study, NOMs are applied for the structural optimality evaluation, where only design variables are necessary. To this end, Metropolis genetic algorithm (MGA) is advantageously used and applied for a standard optimization model of caisson composite breakwater. In the numerical example, cost and constraint functions are assumed to be changed from the orignal design situation and their effects are evaluated for optimality. From the theoretical consideration and numerical experience, it is found that the proposed optimality evaluation procedure with MGA-based NOM is efficient and practically applicable.

  • PDF

오차 계산 방식에 따른 사료용 벼 품종의 품종모수 추정치 불확도 비교 (Comparison between Uncertainties of Cultivar Parameter Estimates Obtained Using Error Calculation Methods for Forage Rice Cultivars)

  • 조영상;현신우;김광수
    • 한국농림기상학회지
    • /
    • 제25권3호
    • /
    • pp.129-141
    • /
    • 2023
  • 작물 모형은 작물의 유전적 특성을 나타내는 품종모수를 요구하며, 품종모수는 작물의 개별 품종별로 추정되어야 한다. 품종모수의 추정에는 고품질의 많은 생육 자료가 요구되지만, 자료의 생산에 상당한 비용이 필요하다. 비교적 낮은 품질의 가용성이 높은 자료를 활용하는 대신, 대량의 랜덤 모수를 생성하고 이를 평가하여 품종모수를 추정할 수 있다. 본 연구에서는 SIMPLE 작물 모델의 불확도를 최소화하기 위해 품종모수 추정 방식을 비교하고, 두 앙상블 방식과 대한 비교를 하였다. 모수 추정을 위한 Metropolis-Hastings (MH) 알고리즘에 대한 목적함수로 로그 가능도(log-likelihood: LL)와 generic composite similarity measure (GCSM)를 사용하였다. 또한 품종모수의 평균값을 사용한 예측(Epm)과 개별 모수들로부터 얻어진 추정값의 평균값(Eem)의 일치도를 분석하여 앙상블 방식에 따른 불확도 변화를 파악하였다. 국내에서 재배되는 사료용 벼 품종인 조우 벼와 영우 벼를 대상으로 품종모수를 추정하였다. 2013년, 2014년, 2016년에 대한 수원, 전주, 나주, 익산에 위치한 실험포장에서 얻은 수량 관측 자료를 사용하였다. 또한 2016년부터 2018년까지 수원에서 보고된 별도의 수량 관측 자료를 사용하였다. 목적함수에 따라 추정된 품종모수의 분포에 차이가 있었다. LL을 통해 얻은 품종모수는 GCSM으로 얻은 품종모수보다 좁은 범위에 분포하였다. 두 가지 앙상블 접근법은 통계적으로 유의한 차이가 나타나지 않음을 확인하였다. GCSM의 상대적으로 높은 불확도는 수용확률을 조정하여 낮출 수 있다고 사료되고, Epm의 결과는 기존과 다른 앙상블 방식을 통해 적은 연산을 통해 불확도를 낮출 수 있음을 보인다.